Microelectrode Arrays and Application to Medical Devices

Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in micr...

Full description

Saved in:
Bibliographic Details
Other Authors: Dalton, Colin (Editor), Salari, Alinaghi (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_69133
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03943-175-5 
020 |a 9783039431748 
020 |a 9783039431755 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03943-175-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Dalton, Colin  |4 edt 
700 1 |a Salari, Alinaghi  |4 edt 
700 1 |a Dalton, Colin  |4 oth 
700 1 |a Salari, Alinaghi  |4 oth 
245 1 0 |a Microelectrode Arrays and Application to Medical Devices 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (188 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in microfluidic devices, the mixing of species is also difficult, and unless an active mixing strategy is employed, passive diffusion is the only mechanism that causes the fluid to mix. For many applications, diffusion is considered too slow, and thus many active pumping and mixing strategies have been employed using electrokinetic methods, which utilize a variety of simple and complex microelectrode array structures. Microelectrodes have also been implemented in in vitro intracellular delivery platforms to conduct cell electroporation on chip, where a highly localized electric field on the scale of a single cell is generated to enhance the uptake of extracellular material. In addition, microelectrode arrays are utilized in different microfluidic biosensing modalities, where a higher sensitivity, selectivity, and limit-of-detection are desired. Carbon nanotube microelectrode arrays are used for DNA detection, multi-electrode array chips are used for drug discovery, and there has been an explosion of research into brain-machine interfaces, fueled by microfabricated electrode arrays, both planar and three-dimensional. The advantages associated with microelectrode arrays include small size, the ability to manufacture repeatedly and reliably tens to thousands of micro-electrodes on both rigid and flexible substrates, and their utility for both in vitro and in vivo applications. To realize their full potential, there is a need to develop and integrate microelectrode arrays to form useful medical device systems. As the field of microelectrode array research is wide, and touches many application areas, it is often difficult to locate a single source of relevant information. This Special Issue seeks to showcase research papers, short communications, and review articles, that focus on the application of microelectrode arrays in the medical device sector. Particular interest will be paid to innovative application areas that can improve existing medical devices, such as for neuromodulation and real world lab-on-a-chip applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a electrothermal 
653 |a microelectrode 
653 |a microfluidics 
653 |a micromixing 
653 |a micropump 
653 |a alternating current (AC) electrokinetics 
653 |a bisphenol A 
653 |a self-assembly 
653 |a biosensor 
653 |a flexible electrode 
653 |a polydimethylsiloxane (PDMS) 
653 |a pyramid array micro-structures 
653 |a low contact impedance 
653 |a multimodal laser micromachining 
653 |a ablation characteristics 
653 |a shadow mask 
653 |a interdigitated electrodes 
653 |a soft sensors 
653 |a liquid metal 
653 |a fabrication 
653 |a principle 
653 |a arrays 
653 |a application 
653 |a induced-charge electrokinetic phenomenon 
653 |a ego-dielectrophoresis 
653 |a mobile electrode 
653 |a Janus microsphere 
653 |a continuous biomolecule collection 
653 |a electroconvection 
653 |a microelectrode array (MEA) 
653 |a ion beam assisted electron beam deposition (IBAD) 
653 |a indium tin oxide (ITO) 
653 |a titanium nitride (TiN) 
653 |a neurons 
653 |a transparent 
653 |a islets of Langerhans 
653 |a insulin secretion 
653 |a glucose stimulated insulin response 
653 |a electrochemical transduction 
653 |a intracortical microelectrode arrays 
653 |a shape memory polymer 
653 |a softening 
653 |a robust 
653 |a brain tissue oxygen 
653 |a in vivo monitoring 
653 |a multi-site clinical depth electrode 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2905  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/69133  |7 0  |z DOAB: description of the publication