Molecular Therapies for Inherited Retinal Diseases

Following the implementation of next-generation sequencing technologies (e.g., exome and genome sequencing) in molecular diagnostics, the majority of genetic defects underlying inherited retinal disease (IRD) can readily be identified. In parallel, opportunities to counteract the molecular consequen...

Full description

Saved in:
Bibliographic Details
Other Authors: Collin, Rob W.J (Editor), Garanto, Alejandro (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
AAV
IRD
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_69174
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03943-177-9 
020 |a 9783039431762 
020 |a 9783039431779 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03943-177-9  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PS  |2 bicssc 
100 1 |a Collin, Rob W.J.  |4 edt 
700 1 |a Garanto, Alejandro  |4 edt 
700 1 |a Collin, Rob W.J.  |4 oth 
700 1 |a Garanto, Alejandro  |4 oth 
245 1 0 |a Molecular Therapies for Inherited Retinal Diseases 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (262 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Following the implementation of next-generation sequencing technologies (e.g., exome and genome sequencing) in molecular diagnostics, the majority of genetic defects underlying inherited retinal disease (IRD) can readily be identified. In parallel, opportunities to counteract the molecular consequences of these defects are rapidly emerging, providing hope for personalized medicine. 'Classical' gene augmentation therapy has been under study for several genetic subtypes of IRD and can be considered a safe and sometimes effective therapeutic strategy. The recent market approval of the first retinal gene augmentation therapy product (LuxturnaTM, for individuals with bi-allelic RPE65 mutations) by the FDA has not only demonstrated the potential of this specific approach, but also opened avenues for the development of other strategies. However, every gene-or even every mutation-may need a tailor-made therapeutic approach, in order to obtain the most efficacious strategy with minimal risks associated. In addition to gene augmentation therapy, other subtypes of molecular therapy are currently being designed and/or implemented, including splice modulation, DNA or RNA editing, optogenetics and pharmacological modulation. In addition, the development of proper delivery vectors has gained strong attention, and should not be overlooked when designing and testing a novel therapeutic approach. In this Special Issue, we aim to describe the current state of the art of molecular therapeutics for IRD, and discuss existing and novel therapeutic strategies, from idea to implementation, and from bench to bedside. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Biology, life sciences  |2 bicssc 
653 |a induced pluripotent stem cell (iPSC) 
653 |a clustered regularly interspaced short palindromic repeats (CRISPR) 
653 |a homology-directed repair (HDR) 
653 |a Enhanced S-Cone Syndrome (ESCS) 
653 |a NR2E3 
653 |a AAV 
653 |a retina 
653 |a gene therapy 
653 |a dual AAV 
653 |a gold nanoparticles 
653 |a DNA-wrapped gold nanoparticles 
653 |a ARPE-19 cells 
653 |a retinal pigment epithelium 
653 |a clathrin-coated vesicles 
653 |a endosomal trafficking 
653 |a retinitis pigmentosa 
653 |a autosomal dominant 
653 |a G56R 
653 |a putative dominant negative effect 
653 |a gapmer antisense oligonucleotides 
653 |a allele-specific knockdown 
653 |a Leber congenital amaurosis and allied retinal ciliopathies 
653 |a CEP290 
653 |a Flanders founder c.4723A &gt 
653 |a T nonsense mutation 
653 |a Cilia elongation 
653 |a spontaneous nonsense correction 
653 |a AON-mediated exon skipping 
653 |a microRNA 
653 |a photoreceptors 
653 |a rods 
653 |a cones 
653 |a bipolar cells 
653 |a Müller glia 
653 |a retinal inherited disorders 
653 |a retinal degeneration 
653 |a antisense oligonucleotides 
653 |a Stargardt disease 
653 |a inherited retinal diseases 
653 |a splicing modulation 
653 |a RNA therapy 
653 |a ABCA4 
653 |a iPSC-derived photoreceptor precursor cells 
653 |a cyclic GMP 
653 |a apoptosis 
653 |a necrosis 
653 |a drug delivery systems 
653 |a translational medicine 
653 |a Usher syndrome 
653 |a Leber congenital amaurosis 
653 |a RPE65 
653 |a nonprofit 
653 |a patient registry 
653 |a translational 
653 |a protein trafficking 
653 |a protein folding 
653 |a protein degradation 
653 |a chaperones 
653 |a chaperonins 
653 |a heat shock response 
653 |a unfolded protein response 
653 |a autophagy 
653 |a therapy 
653 |a IRD 
653 |a DNA therapies 
653 |a RNA therapies 
653 |a compound therapies 
653 |a clinical trials 
653 |a Retinitis Pigmentosa GTPase Regulator 
653 |a adeno-associated viral 
653 |a Retinitis Pigmentosa (RP) 
653 |a choroideremia 
653 |a REP1 
653 |a inherited retinal disease 
653 |a treatment 
653 |a apical polarity 
653 |a crumbs complex 
653 |a fetal retina 
653 |a PAR complex 
653 |a retinal organoids 
653 |a retinogenesis 
653 |a gene augmentation 
653 |a adeno-associated virus (AAV) 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/2946  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/69174  |7 0  |z DOAB: description of the publication