Advances in Remote Sensing-based Disaster Monitoring and Assessment

Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by d...

Full description

Saved in:
Bibliographic Details
Other Authors: Im, Jungho (Editor), Park, Haemi (Editor), Takeuchi, Wataru (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_69282
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03943-323-0 
020 |a 9783039433223 
020 |a 9783039433230 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03943-323-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
100 1 |a Im, Jungho  |4 edt 
700 1 |a Park, Haemi  |4 edt 
700 1 |a Takeuchi, Wataru  |4 edt 
700 1 |a Im, Jungho  |4 oth 
700 1 |a Park, Haemi  |4 oth 
700 1 |a Takeuchi, Wataru  |4 oth 
245 1 0 |a Advances in Remote Sensing-based Disaster Monitoring and Assessment 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (232 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a wildfire 
653 |a satellite vegetation indices 
653 |a live fuel moisture 
653 |a empirical model function 
653 |a Southern California 
653 |a chaparral ecosystem 
653 |a forest fire 
653 |a forest recovery 
653 |a satellite remote sensing 
653 |a vegetation index 
653 |a burn index 
653 |a gross primary production 
653 |a South Korea 
653 |a land subsidence 
653 |a PS-InSAR 
653 |a uneven settlement 
653 |a building construction 
653 |a Beijing urban area 
653 |a floodplain delineation 
653 |a inaccessible region 
653 |a machine learning 
653 |a flash flood 
653 |a risk 
653 |a LSSVM 
653 |a China 
653 |a Himawari-8 
653 |a threshold-based algorithm 
653 |a remote sensing 
653 |a dryness monitoring 
653 |a soil moisture 
653 |a NIR-Red spectral space 
653 |a Landsat-8 
653 |a MODIS 
653 |a Xinjiang province of China 
653 |a SDE 
653 |a PE 
653 |a groundwater level 
653 |a compressible sediment layer 
653 |a tropical cyclone formation 
653 |a WindSat 
653 |a disaster monitoring 
653 |a wireless sensor network 
653 |a debris flow 
653 |a anomaly detection 
653 |a deep learning 
653 |a accelerometer sensor 
653 |a total precipitable water 
653 |a Himawari-8 AHI 
653 |a random forest 
653 |a deep neural network 
653 |a XGBoost 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3072  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/69282  |7 0  |z DOAB: description of the publication