Artificial Intelligence Applications to Smart City and Smart Enterprise

Smart cities operate under more resource-efficient management and economy than ordinary cities. As such, advanced business models have emerged around smart cities, which led to the creation of smart enterprises and organizations that depend on advanced technologies. This book includes 21 selected an...

Full description

Saved in:
Bibliographic Details
Other Authors: Impedovo, Donato (Editor), PIRLO, Giuseppe (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
ITS
DSS
RNN
GRU
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_69323
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03936-438-1 
020 |a 9783039364374 
020 |a 9783039364381 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03936-438-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
100 1 |a Impedovo, Donato  |4 edt 
700 1 |a PIRLO, Giuseppe  |4 edt 
700 1 |a Impedovo, Donato  |4 oth 
700 1 |a PIRLO, Giuseppe  |4 oth 
245 1 0 |a Artificial Intelligence Applications to Smart City and Smart Enterprise 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (374 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Smart cities operate under more resource-efficient management and economy than ordinary cities. As such, advanced business models have emerged around smart cities, which led to the creation of smart enterprises and organizations that depend on advanced technologies. This book includes 21 selected and peer-reviewed articles contributed in the wide spectrum of artificial intelligence applications to smart cities. Chapters refer to the following areas of interest: vehicular traffic prediction, social big data analysis, smart city management, driving and routing, localization, safety, health, and life quality. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a spatio-temporal 
653 |a residual networks 
653 |a bus traffic flow prediction 
653 |a advance rate 
653 |a shield performance 
653 |a principal component analysis 
653 |a ANFIS-GA 
653 |a tunnel 
653 |a online learning 
653 |a extreme learning machine 
653 |a cyclic dynamics 
653 |a transfer learning 
653 |a knowledge preservation 
653 |a Feature Adaptive 
653 |a optimization 
653 |a Bacterial Foraging algorithm 
653 |a Swarm Intelligence algorithm 
653 |a Isolated Microgrid 
653 |a traffic surveillance video 
653 |a state analysis 
653 |a Grassmann manifold 
653 |a neural network 
653 |a machine-learning 
653 |a quality of life 
653 |a Better Life Index 
653 |a bagging 
653 |a ensemble learning 
653 |a pedestrian attributes 
653 |a surveillance image 
653 |a semantic attributes recognition 
653 |a multi-label learning 
653 |a large-scale database 
653 |a traffic congestion detection 
653 |a minimizing traffic congestion 
653 |a traffic prediction 
653 |a deep learning 
653 |a urban mobility 
653 |a ITS 
653 |a Vehicle-to-Infrastructure 
653 |a neural networks 
653 |a LSTM 
653 |a embeddings 
653 |a trajectories 
653 |a motion behavior 
653 |a smart tourism 
653 |a driver's behavior detection 
653 |a texting and driving 
653 |a convolutional neural network 
653 |a smart car 
653 |a smart cities 
653 |a smart infotainment 
653 |a driver distraction 
653 |a cameras 
653 |a convolution 
653 |a detection 
653 |a image recognition 
653 |a DSS 
653 |a diabetes prediction 
653 |a homecare assistance information system 
653 |a muti-attribute analysis 
653 |a artificial training dataset 
653 |a machine learning 
653 |a big data 
653 |a data analysis 
653 |a sensors 
653 |a Internet of Things 
653 |a vehicular networks 
653 |a VDTN 
653 |a routing 
653 |a message scheduling 
653 |a traffic flow prediction 
653 |a wavenet 
653 |a TrafficWave 
653 |a RNN 
653 |a GRU 
653 |a SAEs 
653 |a risk assessment 
653 |a neural architecture search 
653 |a recurrent neural network 
653 |a automated driving vehicle 
653 |a decision support system 
653 |a artificial intelligence 
653 |a disaster management 
653 |a Smart city 
653 |a program management 
653 |a integrated model 
653 |a smart city 
653 |a intelligence transportation system 
653 |a computer vision 
653 |a potential pedestrian safety 
653 |a data mining 
653 |a healthcare 
653 |a Apache Spark 
653 |a disease detection 
653 |a symptoms detection 
653 |a Arabic language 
653 |a Saudi dialect 
653 |a Twitter 
653 |a high performance computing (HPC) 
653 |a spatial-temporal dependencies 
653 |a traffic periodicity 
653 |a graph convolutional network 
653 |a traffic speed prediction 
653 |a vehicular traffic 
653 |a surveillance video 
653 |a big data analysis 
653 |a autonomous driving 
653 |a life quality 
653 |a pattern recognition 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3115  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/69323  |7 0  |z DOAB: description of the publication