Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories

Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963, and their uses have expanded to ever larger structures, especially as structural health monitoring (SHM) of large structures has become the most urgent task for...

Full description

Saved in:
Bibliographic Details
Other Authors: Ono, Kanji (Editor), Shiotani, Tomoki (Editor), Wevers, Martine (Editor), Hamstad, Marvin A. (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_69325
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03928-475-7 
020 |a 9783039284740 
020 |a 9783039284757 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03928-475-7  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBX  |2 bicssc 
100 1 |a Ono, Kanji  |4 edt 
700 1 |a Shiotani, Tomoki  |4 edt 
700 1 |a Wevers, Martine  |4 edt 
700 1 |a Hamstad, Marvin A.  |4 edt 
700 1 |a Ono, Kanji  |4 oth 
700 1 |a Shiotani, Tomoki  |4 oth 
700 1 |a Wevers, Martine  |4 oth 
700 1 |a Hamstad, Marvin A.  |4 oth 
245 1 0 |a Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (298 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963, and their uses have expanded to ever larger structures, especially as structural health monitoring (SHM) of large structures has become the most urgent task for engineering communities around the world. The needs for advanced AE monitoring methods are felt keenly by those dealing with aging infrastructures. Many publications have appeared covering various aspects of AE techniques, but documentation of actual applications of AE techniques has been mostly limited to reports of successful results without technical details that allow objective evaluation of the results. There are some exceptions in the literature. In this Special Issue of the Acoustics section of Applied Sciences, we seek contributions covering these exceptions cited here. Here, we seek contributions describing case histories of AE applications to large structures that have achieved the goals of SHM by providing adequate technical information supporting the success stories. Types of structures can include aerospace and geological structures, bridges, buildings, factories, maritime facilities, off-shore structures, etc. Experiences with AE monitoring methods designed and proven for large stru 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a acoustic emission 
653 |a thermal cracking 
653 |a asphalt pavements 
653 |a embrittlement temperatures 
653 |a recycled asphalt pavements 
653 |a recycled asphalt shingles 
653 |a cooling cycles 
653 |a closed-form solution 
653 |a outlier 
653 |a time difference of arrival 
653 |a weight estimation 
653 |a structural diagnosis 
653 |a attenuation 
653 |a source location 
653 |a sensing 
653 |a signal processing 
653 |a structural health monitoring 
653 |a time series analysis 
653 |a b-value 
653 |a natural time 
653 |a critical phenomena 
653 |a reliability 
653 |a structural integrity 
653 |a crack growth 
653 |a fatigue life prediction 
653 |a uncertainty analysis 
653 |a nondestructive testing 
653 |a non-destructive testing 
653 |a hydrotreater 
653 |a bridge 
653 |a high temperature 
653 |a gas adsorber 
653 |a rotary kiln 
653 |a dragline 
653 |a acoustic emission (AE) 
653 |a non-destructive methods (NDT) 
653 |a diagnostic methods 
653 |a bridges 
653 |a structural health monitoring (SHM) 
653 |a acoustic emission swarm 
653 |a 2011 Tohoku earthquake 
653 |a repeating earthquake 
653 |a multiplet 
653 |a crustal movement 
653 |a optimized EEMD 
653 |a 2D-MUSIC 
653 |a composite structure 
653 |a impact localization 
653 |a part qualification 
653 |a structural design 
653 |a composites 
653 |a nondestructive evaluation (NDE) 
653 |a in situ acoustic emission (AE) monitoring 
653 |a mines 
653 |a host rock 
653 |a remote monitoring 
653 |a corrosion 
653 |a nuclear facilities 
653 |a alkali-silica reaction 
653 |a pattern recognition 
653 |a confinement 
653 |a damage evaluation 
653 |a beam 
653 |a vibration 
653 |a high-rate dynamics 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3117  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/69325  |7 0  |z DOAB: description of the publication