Mathematical Physics II

The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this "unreasonable appropriateness of Mathematics in the Natural Scie...

Full description

Saved in:
Bibliographic Details
Other Authors: De Micheli, Enrico (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_69419
005 20210501
003 oapen
006 m o d
007 cr|mn|---annan
008 20210501s2020 xx |||||o ||| 0|eng d
020 |a books978-3-03943-496-1 
020 |a 9783039434954 
020 |a 9783039434961 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-03943-496-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
100 1 |a De Micheli, Enrico  |4 edt 
700 1 |a De Micheli, Enrico  |4 oth 
245 1 0 |a Mathematical Physics II 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (182 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this "unreasonable appropriateness of Mathematics in the Natural Sciences" emerged soon at the beginning of the scientific thought and was splendidly depicted by the words of Galileo: "The grand book, the Universe, is written in the language of Mathematics." In this marriage, what Bertrand Russell called the supreme beauty, cold and austere, of Mathematics complements the supreme beauty, warm and engaging, of Physics. This book, which consists of nine articles, gives a flavor of these beauties and covers an ample range of mathematical subjects that play a relevant role in the study of physics and engineering. This range includes the study of free probability measures associated with p-adic number fields, non-commutative measures of quantum discord, non-linear Schrödinger equation analysis, spectral operators related to holomorphic extensions of series expansions, Gibbs phenomenon, deformed wave equation analysis, and optimization methods in the numerical study of material properties. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Mathematics & science  |2 bicssc 
653 |a prolongation structure 
653 |a mNLS equation 
653 |a Riemann-Hilbert problem 
653 |a initial-boundary value problem 
653 |a free probability 
653 |a primes 
653 |a p-adic number fields 
653 |a Banach *-probability spaces 
653 |a weighted-semicircular elements 
653 |a semicircular elements 
653 |a truncated linear functionals 
653 |a FCM fuel 
653 |a thermal-mechanical performance 
653 |a failure probability 
653 |a silicon carbide 
653 |a quantum discord 
653 |a non-commutativity measure 
653 |a dynamic models 
653 |a Gibbs phenomenon 
653 |a quasi-affine 
653 |a shift-invariant system 
653 |a dual tight framelets 
653 |a oblique extension principle 
653 |a B-splines 
653 |a crack growth behavior 
653 |a particle model 
653 |a intersecting flaws 
653 |a uniaxial compression 
653 |a reinforced concrete 
653 |a retaining wall 
653 |a optimization 
653 |a bearing capacity 
653 |a particle swarm optimization 
653 |a PSO 
653 |a generalized Fourier transform 
653 |a deformed wave equation 
653 |a Huygens' principle 
653 |a representation of ??(2,ℝ) 
653 |a holomorphic extension 
653 |a spherical Laplace transform 
653 |a non-Euclidean Fourier transform 
653 |a Fourier-Legendre expansion 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3221  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/69419  |7 0  |z DOAB: description of the publication