Chapter Machine Learning Models for Industrial Applications

More and more industries are aspiring to achieve a successful production using the known artificial intelligence. Machine learning (ML) stands as a powerful tool for making very accurate predictions, concept classification, intelligent control, maintenance predictions, and even fault and anomaly det...

Full description

Saved in:
Bibliographic Details
Main Author: Enislay, Ramentol (auth)
Other Authors: Tomas, Olsson (auth), Shaibal, Barua (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70162
003 oapen
006 m o d
007 cr|mn|---annan
008 ||||||||s2021 xx |||||o ||| 0|eng d
020 |a intechopen.93043 
040 |a oapen  |c oapen 
024 7 |a 10.5772/intechopen.93043  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TBC  |2 bicssc 
100 1 |a Enislay, Ramentol  |4 auth 
700 1 |a Tomas, Olsson  |4 auth 
700 1 |a Shaibal, Barua  |4 auth 
245 1 0 |a Chapter Machine Learning Models for Industrial Applications 
260 |b InTechOpen  |c 2021 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a More and more industries are aspiring to achieve a successful production using the known artificial intelligence. Machine learning (ML) stands as a powerful tool for making very accurate predictions, concept classification, intelligent control, maintenance predictions, and even fault and anomaly detection in real time. The use of machine learning models in industry means an increase in efficiency: energy savings, human resources efficiency, increase in product quality, decrease in environmental pollution, and many other advantages. In this chapter, we will present two industrial applications of machine learning. In all cases we achieve interesting results that in practice can be translated as an increase in production efficiency. The solutions described cover areas such as prediction of production quality in an oil and gas refinery and predictive maintenance for micro gas turbines. The results of the experiments carried out show the viability of the solutions. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Engineering: general  |2 bicssc 
653 |a machine learning, prediction, regression methods, maintenance, degradation prediction 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49384/1/72763.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49384/1/72763.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70162  |7 0  |z DOAB: description of the publication