Chapter Genetic Algorithm Optimization of an Energy Storage System Design and Fuzzy Logic Supervision for Battery Electric Vehicles

This chapter presents a methodology to optimize the capacity and power of the ultracapacitor (UC) energy storage device and also the fuzzy logic supervision strategy for a battery electric vehicle (BEV) equipped with electrochemical battery (EB). The aim of the optimization was to prolong the EB lif...

Full description

Saved in:
Bibliographic Details
Main Author: Breban, Stefan (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2016
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70183
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2016 xx |||||o ||| 0|eng d
020 |a 62587 
040 |a oapen  |c oapen 
024 7 |a 10.5772/62587  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PBU  |2 bicssc 
100 1 |a Breban, Stefan  |4 auth 
245 1 0 |a Chapter Genetic Algorithm Optimization of an Energy Storage System Design and Fuzzy Logic Supervision for Battery Electric Vehicles 
260 |b InTechOpen  |c 2016 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This chapter presents a methodology to optimize the capacity and power of the ultracapacitor (UC) energy storage device and also the fuzzy logic supervision strategy for a battery electric vehicle (BEV) equipped with electrochemical battery (EB). The aim of the optimization was to prolong the EB life and consequently to permit financial economies for the end-user of the BEV. Eight variables were used in the optimization process: two variables that control the energy storage capacity and power of the UC device and six variables that change the membership functions of the fuzzy logic supervisor. The results of the optimization, using a genetic algorithm from MATLAB®, are showing an increase of the financial economy of 16%. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Optimization  |2 bicssc 
653 |a Genetic algorithm optimization, battery electric vehicle, fuzzy logic, ultracapacitor, electrochemical battery 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49160/1/50204.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49160/1/50204.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70183  |7 0  |z DOAB: description of the publication