Chapter Genetic Algorithm Optimization of an Energy Storage System Design and Fuzzy Logic Supervision for Battery Electric Vehicles
This chapter presents a methodology to optimize the capacity and power of the ultracapacitor (UC) energy storage device and also the fuzzy logic supervision strategy for a battery electric vehicle (BEV) equipped with electrochemical battery (EB). The aim of the optimization was to prolong the EB lif...
Saved in:
Main Author: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
InTechOpen
2016
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_70183 | ||
005 | 20210210 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20210210s2016 xx |||||o ||| 0|eng d | ||
020 | |a 62587 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.5772/62587 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a PBU |2 bicssc | |
100 | 1 | |a Breban, Stefan |4 auth | |
245 | 1 | 0 | |a Chapter Genetic Algorithm Optimization of an Energy Storage System Design and Fuzzy Logic Supervision for Battery Electric Vehicles |
260 | |b InTechOpen |c 2016 | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This chapter presents a methodology to optimize the capacity and power of the ultracapacitor (UC) energy storage device and also the fuzzy logic supervision strategy for a battery electric vehicle (BEV) equipped with electrochemical battery (EB). The aim of the optimization was to prolong the EB life and consequently to permit financial economies for the end-user of the BEV. Eight variables were used in the optimization process: two variables that control the energy storage capacity and power of the UC device and six variables that change the membership functions of the fuzzy logic supervisor. The results of the optimization, using a genetic algorithm from MATLAB®, are showing an increase of the financial economy of 16%. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/3.0/ |2 cc |4 https://creativecommons.org/licenses/by/3.0/ | ||
546 | |a English | ||
650 | 7 | |a Optimization |2 bicssc | |
653 | |a Genetic algorithm optimization, battery electric vehicle, fuzzy logic, ultracapacitor, electrochemical battery | ||
773 | 1 | 0 | |7 nnaa |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/49160/1/50204.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/49160/1/50204.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/70183 |7 0 |z DOAB: description of the publication |