Chapter Sugar Beet Tolerance to Drought: Physiological and Molecular Aspects

Drought often reduces sugar beet yield in the Balkan agroecological region. Climate forecasts indicate that this negative trend of drought periods will continue. Tolerance to drought is a complex trait, which comprises involvement of both physiological and molecular mechanisms in plants. This resear...

Full description

Saved in:
Bibliographic Details
Main Author: Putnik-Delić, Marina (auth)
Other Authors: Nagl, Nevena (auth), Maksimović, Ivana (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2018
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70214
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2018 xx |||||o ||| 0|eng d
020 |a intechopen.72253 
040 |a oapen  |c oapen 
024 7 |a 10.5772/intechopen.72253  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PSAK  |2 bicssc 
100 1 |a Putnik-Delić, Marina  |4 auth 
700 1 |a Nagl, Nevena  |4 auth 
700 1 |a Maksimović, Ivana  |4 auth 
245 1 0 |a Chapter Sugar Beet Tolerance to Drought: Physiological and Molecular Aspects 
260 |b InTechOpen  |c 2018 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Drought often reduces sugar beet yield in the Balkan agroecological region. Climate forecasts indicate that this negative trend of drought periods will continue. Tolerance to drought is a complex trait, which comprises involvement of both physiological and molecular mechanisms in plants. This research was conducted on 11 sugar beet genotypes, which showed different tolerance to drought in the field. Experiment had three parts: water deficiency caused by cessation of watering conducted in the greenhouse, water deficiency imposed by different concentrations of polyethylene glycol on plants grown in tissue culture, and analysis of alterations in gene expression under drought. Plants exposed to stress in greenhouse had on average three leaves less, 4% lower water content, and seven-fold higher proline content. Classification of genotypes with respect to the level of tolerance to water deficiency on the basis of concentration of free proline, assessed in the experiment in vitro, corresponded to the result of the observation test in the field. Changes in the expression of candidate genes under drought suggest that one of them might be used for further development as a DNA-based marker. These results can be applied in sugar beet breeding aimed at increasing tolerance to water deficiency. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Genetics (non-medical)  |2 bicssc 
653 |a water deficiency, Beta vulgaris, drought tolerance, polyethylene glycol, chloroplast pigments, chlorophyll fluorescence, free proline, green house, tissue culture, candidate genes 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49286/1/58166.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49286/1/58166.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70214  |7 0  |z DOAB: description of the publication