Chapter Artificial Intelligence Data Science Methodology for Earth Observation

This chapter describes a Copernicus Access Platform Intermediate Layers Small-Scale Demonstrator, which is a general platform for the handling, analysis, and interpretation of Earth observation satellite images, mainly exploiting big data of the European Copernicus Programme by artificial intelligen...

Full description

Saved in:
Bibliographic Details
Main Author: Schwarz, Gottfried (auth)
Other Authors: Lorenzo, Jose (auth), Castel, Fabien (auth), Datcu, Mihai (auth), Octavian Dumitru, Corneliu (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2019
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70237
003 oapen
006 m o d
007 cr|mn|---annan
008 ||||||||s2019 xx |||||o ||| 0|eng d
020 |a intechopen.86886 
040 |a oapen  |c oapen 
024 7 |a 10.5772/intechopen.86886  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a U  |2 bicssc 
100 1 |a Schwarz, Gottfried  |4 auth 
700 1 |a Lorenzo, Jose  |4 auth 
700 1 |a Castel, Fabien  |4 auth 
700 1 |a Datcu, Mihai  |4 auth 
700 1 |a Octavian Dumitru, Corneliu  |4 auth 
245 1 0 |a Chapter Artificial Intelligence Data Science Methodology for Earth Observation 
260 |b InTechOpen  |c 2019 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This chapter describes a Copernicus Access Platform Intermediate Layers Small-Scale Demonstrator, which is a general platform for the handling, analysis, and interpretation of Earth observation satellite images, mainly exploiting big data of the European Copernicus Programme by artificial intelligence (AI) methods. From 2020, the platform will be applied at a regional and national level to various use cases such as urban expansion, forest health, and natural disasters. Its workflows allow the selection of satellite images from data archives, the extraction of useful information from the metadata, the generation of descriptors for each individual image, the ingestion of image and descriptor data into a common database, the assignment of semantic content labels to image patches, and the possibility to search and to retrieve similar content-related image patches. The main two components, namely, data mining and data fusion, are detailed and validated. The most important contributions of this chapter are the integration of these two components with a Copernicus platform on top of the European DIAS system, for the purpose of large-scale Earth observation image annotation, and the measurement of the clustering and classification performances of various Copernicus Sentinel and third-party mission data. The average classification accuracy is ranging from 80 to 95% depending on the type of images. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Computing & information technology  |2 bicssc 
653 |a Earth observation, machine learning, data mining, Copernicus Programme, TerraSAR-X 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49306/1/67593.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49306/1/67593.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70237  |7 0  |z DOAB: description of the publication