Chapter Spin-Wave Dynamics in the Presence of Magnetic Vortices

This chapter describes spin-wave excitations in nanosized dots and rings in the presence of the vortex state. The special attention is paid to the manifestation of the competition between exchange and dipolar interactions in the spin-wave spectrum as well as the correlation between the spectrum and...

Full description

Saved in:
Bibliographic Details
Main Author: Mamica, Sławomir (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2017
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70378
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2017 xx |||||o ||| 0|eng d
020 |a 66099 
040 |a oapen  |c oapen 
024 7 |a 10.5772/66099  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PHDF  |2 bicssc 
100 1 |a Mamica, Sławomir  |4 auth 
245 1 0 |a Chapter Spin-Wave Dynamics in the Presence of Magnetic Vortices 
260 |b InTechOpen  |c 2017 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This chapter describes spin-wave excitations in nanosized dots and rings in the presence of the vortex state. The special attention is paid to the manifestation of the competition between exchange and dipolar interactions in the spin-wave spectrum as well as the correlation between the spectrum and the stability of the vortex. The calculation method uses the dynamic matrix for an all-discrete system, the numerical diagonalization of which yields the spectrum of frequencies and spin-wave profiles of normal modes of the dot. We study in-plane vortices of two types: a circular magnetization in circular dots and rings and the Landau state in square rings. We examine the influence of the dipolar-exchange competition and the geometry of the dot on the stability of the vortex and on the spectrum of spin waves. We show that the lowest-frequency mode profile proves to be indicative of the dipolar-to-exchange interaction ratio and the vortex stability is closely related to the spin-wave profile of the soft mode. The negative dispersion relation is also shown. Our results obtained for in-plane vortices are in qualitative agreement with results for core-vortices obtained from experiments, micromagnetic simulations, and analytical calculations. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Fluid mechanics  |2 bicssc 
653 |a magnetic dot, in-plane vortex, spin waves, stability, dipolar-exchange competition 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49203/1/53064.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49203/1/53064.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70378  |7 0  |z DOAB: description of the publication