Chapter Solution-Processed Graphene-Based Transparent Conductive Electrodes as Ideal ITO Alternatives for Organic Solar Cells

The isolation of free-standing graphene in 2004 was the spark for a new scientific revolution in the field of optoelectronics. Due to its extraordinary optoelectronic and mechanical properties, graphene is the next wonder material that could act as an ideal low-cost alternative material for the effe...

Full description

Saved in:
Bibliographic Details
Main Author: Stylianakis, Minas M. (auth)
Other Authors: Konios, Dimitrios (auth), Petridis, Konstantinos (auth), Kymakis, Emmanuel (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2017
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70449
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2017 xx |||||o ||| 0|eng d
020 |a 67919 
040 |a oapen  |c oapen 
024 7 |a 10.5772/67919  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PNRS  |2 bicssc 
100 1 |a Stylianakis, Minas M.  |4 auth 
700 1 |a Konios, Dimitrios  |4 auth 
700 1 |a Petridis, Konstantinos  |4 auth 
700 1 |a Kymakis, Emmanuel  |4 auth 
245 1 0 |a Chapter Solution-Processed Graphene-Based Transparent Conductive Electrodes as Ideal ITO Alternatives for Organic Solar Cells 
260 |b InTechOpen  |c 2017 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The isolation of free-standing graphene in 2004 was the spark for a new scientific revolution in the field of optoelectronics. Due to its extraordinary optoelectronic and mechanical properties, graphene is the next wonder material that could act as an ideal low-cost alternative material for the effective replacement of the expensive conventional materials used in organic optoelectronic applications. Indeed, the enhanced electrical conductivity of graphene combined with its high transparency in visible and near-infrared spectra, enabled graphene to be an ideal low-cost indium tin oxide (ITO) alternative in organic solar cells (OSCs). The prospects and future research trend in graphene-based TCE are also discussed. On the other hand, solution-processed graphene combines the unique optoelectrical properties of graphene with large area deposition and flexible substrates making it compatible with printing and coating technologies, such as roll-to-roll, inkjet, gravure, and flexographic printing manufacturing methods. This chapter provides an overview of the most recent research progress in the application of solution-processed graphene-based films as transparent conductive electrodes (TCEs) in OSCs. (a) Chemically converted graphene (CCG), (b) thermally and photochemically reduced graphene oxide, (c) composite reduced graphene oxide-carbon nanotubes, and (d) reduced graphene oxide mesh films have demonstrated their applicability in OSCs as transparent, conductive electrodes. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Solid state chemistry  |2 bicssc 
653 |a organic solar cells, transparent electrodes, graphene, reduction 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49208/1/54742.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49208/1/54742.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49208/1/54742.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70449  |7 0  |z DOAB: description of the publication