Chapter Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired Through IoT in Smart Cities
In this chapter, we propose a methodology for behavior variation and anomaly detection from acquired sensory data, based on temporal clustering models. Data are collected from five prominent European smart cities, and Singapore, that aim to become fully "elderly-friendly," with the develop...
Kaydedildi:
Yazar: | Kovacevic, Ana (auth) |
---|---|
Diğer Yazarlar: | Urosevic, Vladimir (auth), Kaddachi, Firas (auth) |
Materyal Türü: | Elektronik Kitap Bölümü |
Dil: | İngilizce |
Baskı/Yayın Bilgisi: |
InTechOpen
2018
|
Konular: | |
Online Erişim: | DOAB: download the publication DOAB: description of the publication |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Benzer Materyaller
-
Chapter Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired Through IoT in Smart Cities
Yazar:: Kovacevic, Ana
Baskı/Yayın Bilgisi: (2018) -
DevOps for Trustworthy Smart IoT Systems
Baskı/Yayın Bilgisi: (2021) -
DevOps for Trustworthy Smart IoT Systems
Baskı/Yayın Bilgisi: (2021) -
Smart Sensor Technologies for IoT
Baskı/Yayın Bilgisi: (2021) -
IoT Multi Sensors
Baskı/Yayın Bilgisi: (2023)