Chapter Temporal Clustering for Behavior Variation and Anomaly Detection from Data Acquired Through IoT in Smart Cities

In this chapter, we propose a methodology for behavior variation and anomaly detection from acquired sensory data, based on temporal clustering models. Data are collected from five prominent European smart cities, and Singapore, that aim to become fully "elderly-friendly," with the develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kovacevic, Ana (auth)
Weitere Verfasser: Urosevic, Vladimir (auth), Kaddachi, Firas (auth)
Format: Elektronisch Buchkapitel
Sprache:Englisch
Veröffentlicht: InTechOpen 2018
Schlagworte:
Online-Zugang:DOAB: download the publication
DOAB: description of the publication
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!