Chapter Ultrafast Time‐Resolved Measurements of Hybrid Solar Cells

The early time charge carrier dynamics in quantum dot‐sensitized and organo‐metal halide perovskite solar cells are presented in this chapter. Using transient spectroscopy techniques, i.e., absorption, photoluminescence, and photoconductivity, we probed the generation mechanism, charge injection, mo...

Full description

Saved in:
Bibliographic Details
Main Author: Zheng, Kaibo (auth)
Other Authors: Ponseca, Carlito S. (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2017
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70536
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2017 xx |||||o ||| 0|eng d
020 |a 65022 
040 |a oapen  |c oapen 
024 7 |a 10.5772/65022  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a THX  |2 bicssc 
100 1 |a Zheng, Kaibo  |4 auth 
700 1 |a Ponseca, Carlito S.  |4 auth 
245 1 0 |a Chapter Ultrafast Time‐Resolved Measurements of Hybrid Solar Cells 
260 |b InTechOpen  |c 2017 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The early time charge carrier dynamics in quantum dot‐sensitized and organo‐metal halide perovskite solar cells are presented in this chapter. Using transient spectroscopy techniques, i.e., absorption, photoluminescence, and photoconductivity, we probed the generation mechanism, charge injection, mobility, and recombination of charges in the time scales of subpicosecond (ps) to a nanosecond. In few ps, electron injection from quantum dot to n‐type metal oxide (MO) is complete while hole injection to p‐type MO required hundreds of ps. The injection process is dictated by the band alignment, density of states of MO and the charge transfer state at the interface. For organo‐metal halide perovskite material, there is a distribution of exciton binding energy brought about by the nonuniformity in the quality of the sample. As a result, varying amount of exciton and highly mobile charges may be generated depending on the morphology of the film. In the sample presented here, we found that 30% of photo‐generated charges are excitons, which then dissociates within 2-3 ps. The rest of the photons are instantaneously converted into highly mobile charges (µe = 12.5 cm2 V-1 s-1 and µh = 7.5 cm2 V-1 s-1), and at the appropriate excitation fluence, the photoconductivity remains constant up to 1 ns. The time scale and mechanism of charge injection from perovskite into organic electrodes are also presented. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Alternative & renewable energy sources & technology  |2 bicssc 
653 |a transient absorption, photoluminescence, photoconductivity, THz spectroscopy, mobility 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49228/1/52129.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49228/1/52129.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70536  |7 0  |z DOAB: description of the publication