Chapter Electrochemistry of Surfactants

The interaction of light with matter has triggered the interest of scientists for a long time. The area of plasmonics emerges in this context through the interaction of light with valence electrons in metals. The random phase approximation in the long wavelength limit is used for analytical investig...

Full description

Saved in:
Bibliographic Details
Main Author: CarlosSchulz, Pablo (auth)
Other Authors: Patricia Schulz, Erica (auth), Nicolás Schulz, Eduardo (auth)
Format: Electronic Book Chapter
Language:English
Published: InTechOpen 2017
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_70680
005 20210210
003 oapen
006 m o d
007 cr|mn|---annan
008 20210210s2017 xx |||||o ||| 0|eng d
020 |a 67975 
040 |a oapen  |c oapen 
024 7 |a 10.5772/67975  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a PHFC  |2 bicssc 
100 1 |a CarlosSchulz, Pablo  |4 auth 
700 1 |a Patricia Schulz, Erica  |4 auth 
700 1 |a Nicolás Schulz, Eduardo  |4 auth 
245 1 0 |a Chapter Electrochemistry of Surfactants 
260 |b InTechOpen  |c 2017 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The interaction of light with matter has triggered the interest of scientists for a long time. The area of plasmonics emerges in this context through the interaction of light with valence electrons in metals. The random phase approximation in the long wavelength limit is used for analytical investigation of plasmons in three‐dimensional metals, in a two‐dimensional electron gas, and finally in the most famous two‐dimensional semi‐metal, namely graphene. We show that plasmons in bulk metals as well as in a two‐dimensional electron gas originate from classical laws, whereas quantum effects appear as non‐local corrections. On the other hand, graphene plasmons are purely quantum modes, and thus, they would not exist in a "classical world." Furthermore, under certain circumstances, light is able to couple with plasmons on metallic surfaces, forming a surface plasmon polariton, which is very important in nanoplasmonics due to its subwavelength nature. In addition, we outline two applications that complete our theoretical investigation. First, we examine how the presence of gain (active) dielectrics affects surface plasmon polariton properties and we find that there is a gain value for which the metallic losses are completely eliminated resulting in lossless plasmon propagation. Second, we combine monolayers of graphene in a periodic order and construct a plasmonic metamaterial that provides tunable wave propagation properties, such as epsilon‐near‐zero behavior, normal, and negative refraction. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/3.0/  |2 cc  |4 https://creativecommons.org/licenses/by/3.0/ 
546 |a English 
650 7 |a Condensed matter physics (liquid state & solid state physics)  |2 bicssc 
653 |a random phase approximation, graphene, gain dielectrics, plasmonic metamaterial 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49215/1/54901.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/49215/1/54901.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/70680  |7 0  |z DOAB: description of the publication