Advanced Composites From Materials Characterization to Structural Application
Engineering practice has revealed that innovative technologies' structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be u...
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel, Switzerland
MDPI - Multidisciplinary Digital Publishing Institute
2021
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_76367 | ||
005 | 20220111 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220111s2021 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-0725-5 | ||
020 | |a 9783036507248 | ||
020 | |a 9783036507255 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-0725-5 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
100 | 1 | |a Gribniak, Viktor |4 edt | |
700 | 1 | |a Gribniak, Viktor |4 oth | |
245 | 1 | 0 | |a Advanced Composites |b From Materials Characterization to Structural Application |
260 | |a Basel, Switzerland |b MDPI - Multidisciplinary Digital Publishing Institute |c 2021 | ||
300 | |a 1 electronic resource (378 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Engineering practice has revealed that innovative technologies' structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials' choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
653 | |a steel fiber reinforced concrete (SFRC) | ||
653 | |a slender beams | ||
653 | |a cyclic loading | ||
653 | |a hysteretic response | ||
653 | |a failure mode | ||
653 | |a tests | ||
653 | |a aluminum honeycomb | ||
653 | |a deformation modes | ||
653 | |a shock wave | ||
653 | |a counter-intuitive behavior | ||
653 | |a energy distribution | ||
653 | |a acoustic stealth | ||
653 | |a acoustic coating | ||
653 | |a passive sound absorption | ||
653 | |a active sound absorption | ||
653 | |a acoustic characteristics of a submarine | ||
653 | |a finite element method (FEM) | ||
653 | |a slip | ||
653 | |a group studs | ||
653 | |a composite beam | ||
653 | |a accelerated bridge construction | ||
653 | |a steel fiber | ||
653 | |a in situ amorphous coating | ||
653 | |a laser surface remelting | ||
653 | |a Ti-based alloy | ||
653 | |a pipeline steel | ||
653 | |a toughness | ||
653 | |a cleavage unit | ||
653 | |a crack propagation | ||
653 | |a misorientation angles | ||
653 | |a CFRP laminate | ||
653 | |a mechanically fastened joints | ||
653 | |a gradient material model | ||
653 | |a dissimilar welding materials | ||
653 | |a electron-beam welding | ||
653 | |a fracture morphology | ||
653 | |a fracture toughness | ||
653 | |a crack deflection | ||
653 | |a three-point bending test | ||
653 | |a irreversible thermochromic | ||
653 | |a cement composite | ||
653 | |a manganese violet | ||
653 | |a temperature indication | ||
653 | |a heat monitoring | ||
653 | |a cold-formed profiles | ||
653 | |a high-strength steel | ||
653 | |a local deformations | ||
653 | |a bending test | ||
653 | |a load-bearing capacity | ||
653 | |a FRP | ||
653 | |a concrete | ||
653 | |a damage | ||
653 | |a synergy | ||
653 | |a strengthening | ||
653 | |a finite element analysis | ||
653 | |a composite material | ||
653 | |a tribology | ||
653 | |a vibrations | ||
653 | |a resonance zone | ||
653 | |a aluminum alloys | ||
653 | |a composite materials | ||
653 | |a epoxy resins | ||
653 | |a power cables | ||
653 | |a transmission lines | ||
653 | |a CFRP | ||
653 | |a NSM | ||
653 | |a bond behavior | ||
653 | |a structural behavior | ||
653 | |a material characterization | ||
653 | |a numerical modeling | ||
653 | |a reinforced concrete | ||
653 | |a steel fiber-reinforced concrete (SFRC) | ||
653 | |a tension softening | ||
653 | |a tension stiffening | ||
653 | |a finite element (FE) analysis | ||
653 | |a smeared crack model | ||
653 | |a constitutive analysis | ||
653 | |a residual stresses | ||
653 | |a flexural behavior | ||
653 | |a numerical analysis | ||
653 | |a cyclic tests | ||
653 | |a direct tension tests | ||
653 | |a residual stiffness | ||
653 | |a shear | ||
653 | |a flexure | ||
653 | |a shape memory alloys | ||
653 | |a thermal environment | ||
653 | |a composite laminates | ||
653 | |a sound radiation | ||
653 | |a 3D warp interlock fabric | ||
653 | |a warp yarn interchange ratio | ||
653 | |a mechanical test | ||
653 | |a mechanical characterization | ||
653 | |a fiber-reinforced composite | ||
653 | |a soft body armor | ||
653 | |a para-aramid fiber | ||
653 | |a metal matrix composites | ||
653 | |a SiC | ||
653 | |a AZ91 | ||
653 | |a magnesium alloy | ||
653 | |a Cu-Cr system | ||
653 | |a mechanical alloying | ||
653 | |a solid solubility extension | ||
653 | |a structural evolution | ||
653 | |a thermodynamic | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/3792 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/76367 |7 0 |z DOAB: description of the publication |