Clinical Studies, Big Data, and Artificial Intelligence in Nephrology and Transplantation

In recent years, artificial intelligence has increasingly been playing an essential role in diverse areas in medicine, assisting clinicians in patient management. In nephrology and transplantation, artificial intelligence can be utilized to enhance clinical care, such as through hemodialysis prescri...

Full description

Saved in:
Bibliographic Details
Other Authors: Cheungpasitporn, Wisit (Editor), Thongprayoon, Charat (Editor), Kaewput, Wisit (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
NLR
PLR
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76447
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1135-1 
020 |a 9783036511344 
020 |a 9783036511351 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1135-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Cheungpasitporn, Wisit  |4 edt 
700 1 |a Thongprayoon, Charat  |4 edt 
700 1 |a Kaewput, Wisit  |4 edt 
700 1 |a Cheungpasitporn, Wisit  |4 oth 
700 1 |a Thongprayoon, Charat  |4 oth 
700 1 |a Kaewput, Wisit  |4 oth 
245 1 0 |a Clinical Studies, Big Data, and Artificial Intelligence in Nephrology and Transplantation 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (374 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In recent years, artificial intelligence has increasingly been playing an essential role in diverse areas in medicine, assisting clinicians in patient management. In nephrology and transplantation, artificial intelligence can be utilized to enhance clinical care, such as through hemodialysis prescriptions and the follow-up of kidney transplant patients. Furthermore, there are rapidly expanding applications and validations of comprehensive, computerized medical records and related databases, including national registries, health insurance, and drug prescriptions. For this Special Issue, we made a call to action to stimulate researchers and clinicians to submit their invaluable works and present, here, a collection of articles covering original clinical research (single- or multi-center), database studies from registries, meta-analyses, and artificial intelligence research in nephrology including acute kidney injury, electrolytes and acid-base, chronic kidney disease, glomerular disease, dialysis, and transplantation that will provide additional knowledge and skills in the field of nephrology and transplantation toward improving patient outcomes. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a tacrolimus 
653 |a C/D ratio 
653 |a tacrolimus metabolism 
653 |a everolimus 
653 |a conversion 
653 |a kidney transplantation 
653 |a gut microbiome 
653 |a renal transplant recipient 
653 |a diarrhea 
653 |a immunosuppressive medication 
653 |a gut microbiota 
653 |a 16S rRNA sequencing 
653 |a butyrate-producing bacteria 
653 |a Proteobacteria 
653 |a torquetenovirus 
653 |a immunosuppression 
653 |a transplantation 
653 |a immunosuppressed host 
653 |a outcome 
653 |a renal transplantation 
653 |a Goodpasture syndrome 
653 |a anti-GBM disease 
653 |a epidemiology 
653 |a hospitalization 
653 |a outcomes 
653 |a acute kidney injury 
653 |a risk prediction 
653 |a artificial intelligence 
653 |a patent ductus arteriosus 
653 |a conservative management 
653 |a blood pressure 
653 |a eradication 
653 |a interferon-free regimen 
653 |a hepatitis C infection 
653 |a kidney transplant 
653 |a allograft steatosis 
653 |a lipopeliosis 
653 |a transplant numbers 
653 |a live donors 
653 |a public awareness 
653 |a Google TrendsTM 
653 |a machine learning 
653 |a big data 
653 |a nephrology 
653 |a chronic kidney disease 
653 |a NLR 
653 |a PLR 
653 |a RPGN 
653 |a predictive value 
653 |a hemodialysis 
653 |a withdrawal 
653 |a cellular crescent 
653 |a global sclerosis 
653 |a procurement kidney biopsy 
653 |a glomerulosclerosis 
653 |a minimally-invasive donor nephrectomy 
653 |a robot-assisted surgery 
653 |a laparoscopic surgery 
653 |a organ donation 
653 |a living kidney donation 
653 |a MeltDose® 
653 |a LCPT 
653 |a renal function 
653 |a liver transplantation 
653 |a metabolism 
653 |a erythropoietin 
653 |a fibroblast growth factor 23 
653 |a death 
653 |a weekend effect 
653 |a in-hospital mortality 
653 |a comorbidity 
653 |a dialysis 
653 |a elderly 
653 |a klotho 
653 |a α-Klotho 
653 |a FGF-23 
653 |a kidney donor 
653 |a Nephrology 
653 |a CKD-MBD 
653 |a CKD-Mineral and Bone Disorder 
653 |a deceased donor 
653 |a Eurotransplant Senior Program 
653 |a risk stratification 
653 |a intensive care 
653 |a kidney transplant recipients 
653 |a long-term outcomes 
653 |a graft failure 
653 |a cardiovascular mortality 
653 |a lifestyle 
653 |a inflammation 
653 |a vascular calcification 
653 |a bone mineral density 
653 |a dual-energy X-ray absorptiometry 
653 |a living donation 
653 |a repeated kidney transplantation 
653 |a graft survival 
653 |a prolonged ischaemic time 
653 |a patient survival 
653 |a pre-emptive transplantation 
653 |a metabolomics 
653 |a urine 
653 |a acute rejection 
653 |a allograft 
653 |a cystatin C 
653 |a hyperfiltration 
653 |a kidney injury molecule (KIM)-1 
653 |a tubular damage 
653 |a genetic polymorphisms 
653 |a (cardiac) surgery 
653 |a inflammatory cytokines 
653 |a clinical studies 
653 |a chronic kidney disease (CKD) 
653 |a no known kidney disease (NKD) 
653 |a ICD-10 billing codes 
653 |a phenotyping 
653 |a electronic health record (EHR) 
653 |a estimated glomerular filtration rate (eGFR) 
653 |a machine learning (ML) 
653 |a generalized linear model network (GLMnet) 
653 |a random forest (RF) 
653 |a artificial neural network (ANN), clinical natural language processing (clinical NLP) 
653 |a discharge summaries 
653 |a laboratory values 
653 |a area under the receiver operating characteristic (AUROC) 
653 |a area under the precision-recall curve (AUCPR) 
653 |a fibrosis 
653 |a extracellular matrix 
653 |a collagen type VI 
653 |a living-donor kidney transplantation 
653 |a ethnic disparity 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3882  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76447  |7 0  |z DOAB: description of the publication