Advances in Structural Mechanics Modeled with FEM

It is well known that many structural and physical problems cannot be solved by analytical approaches. These problems require the development of numerical methods to get approximate but accurate solutions. The minite element method (FEM) represents one of the most typical methodologies that can be u...

Full description

Saved in:
Bibliographic Details
Other Authors: Tarantino, Angelo Marcello (Editor), Majorana, Carmelo (Editor), Luciano, Raimondo (Editor), Bacciocchi, Michele (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76496
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-0991-4 
020 |a 9783036509907 
020 |a 9783036509914 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-0991-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a TB  |2 bicssc 
100 1 |a Tarantino, Angelo Marcello  |4 edt 
700 1 |a Majorana, Carmelo  |4 edt 
700 1 |a Luciano, Raimondo  |4 edt 
700 1 |a Bacciocchi, Michele  |4 edt 
700 1 |a Tarantino, Angelo Marcello  |4 oth 
700 1 |a Majorana, Carmelo  |4 oth 
700 1 |a Luciano, Raimondo  |4 oth 
700 1 |a Bacciocchi, Michele  |4 oth 
245 1 0 |a Advances in Structural Mechanics Modeled with FEM 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (266 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a It is well known that many structural and physical problems cannot be solved by analytical approaches. These problems require the development of numerical methods to get approximate but accurate solutions. The minite element method (FEM) represents one of the most typical methodologies that can be used to achieve this aim, due to its simple implementation, easy adaptability, and very good accuracy. For these reasons, the FEM is a widespread technique which is employed in many engineering fields, such as civil, mechanical, and aerospace engineering. The large-scale deployment of powerful computers and the consequent recent improvement of the computational resources have provided the tools to develop numerical approaches that are able to solve more complex structural systems characterized by peculiar mechanical configurations. Laminated or multi-phase composites, structures made of innovative materials, and nanostructures are just some examples of applications that are commonly and accurately solved by the FEM. Analogously, the same numerical approaches can be employed to validate the results of experimental tests. The main aim of this Special Issue is to collect numerical investigations focused on the use of the finite element method 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a beam element 
653 |a Quasi-3D 
653 |a static bending 
653 |a functionally graded beam 
653 |a Monte Carlo method 
653 |a coalbed methane 
653 |a stochastic fracture network 
653 |a fracture geometric parameters 
653 |a dual-porosity and dual-permeability media 
653 |a finite element method 
653 |a three-phase composite materials 
653 |a Finite Element modeling 
653 |a sandwich plates 
653 |a zig-zag theory 
653 |a carbon nanotubes 
653 |a free vibrations 
653 |a soda-lime glass 
653 |a cohesive zone model 
653 |a rate-dependent 
653 |a impact loading 
653 |a finite element 
653 |a FGM 
653 |a plate 
653 |a material-oriented shape functions 
653 |a NURBS 
653 |a Finite elements 
653 |a finite bending 
653 |a 3D elasticity 
653 |a Eulerian slenderness 
653 |a compactness index 
653 |a Searle parameter 
653 |a Elastica 
653 |a pultruded beams 
653 |a effective stiffness matrix 
653 |a FRP 
653 |a hollow circular beams 
653 |a rigid finite element method 
653 |a composite 
653 |a steel-polymer concrete 
653 |a machine tool 
653 |a multibody system 
653 |a orthotropic failure criteria 
653 |a implementation 
653 |a plasticity 
653 |a masonry 
653 |a geometric nonlinearity 
653 |a FEM 
653 |a thermoelasticity 
653 |a bowing 
653 |a transient heat flux 
653 |a acoustic black holes 
653 |a acoustic-oriented design 
653 |a additive manufacturing 
653 |a vibroacoustics 
653 |a material parameter identification 
653 |a model order reduction 
653 |a reinforced concrete 
653 |a finite element analysis 
653 |a crack band 
653 |a strain localization 
653 |a post-peak softening 
653 |a viscoplastic regularization 
653 |a convergence 
653 |a mesh sensitivity 
653 |a bond-slip 
653 |a flexural behavior 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3942  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76496  |7 0  |z DOAB: description of the publication