Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for c...

Full description

Saved in:
Bibliographic Details
Other Authors: Kyamakya, Kyandoghere (Editor), Al-Machot, Fadi (Editor), Mosa, Ahmad Haj (Editor), Bouchachia, Hamid (Editor), Chedjou, Jean Chamberlain (Editor), Bagula, Antoine (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
EEG
GSR
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76513
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1139-9 
020 |a 9783036511382 
020 |a 9783036511399 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1139-9  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Kyamakya, Kyandoghere  |4 edt 
700 1 |a Al-Machot, Fadi  |4 edt 
700 1 |a Mosa, Ahmad Haj  |4 edt 
700 1 |a Bouchachia, Hamid  |4 edt 
700 1 |a Chedjou, Jean Chamberlain  |4 edt 
700 1 |a Bagula, Antoine  |4 edt 
700 1 |a Kyamakya, Kyandoghere  |4 oth 
700 1 |a Al-Machot, Fadi  |4 oth 
700 1 |a Mosa, Ahmad Haj  |4 oth 
700 1 |a Bouchachia, Hamid  |4 oth 
700 1 |a Chedjou, Jean Chamberlain  |4 oth 
700 1 |a Bagula, Antoine  |4 oth 
245 1 0 |a Emotion and Stress Recognition Related Sensors and Machine Learning Technologies 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (550 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a subject-dependent emotion recognition 
653 |a subject-independent emotion recognition 
653 |a electrodermal activity (EDA) 
653 |a deep learning 
653 |a convolutional neural networks 
653 |a automatic facial emotion recognition 
653 |a intensity of emotion recognition 
653 |a behavioral biometrical systems 
653 |a machine learning 
653 |a artificial intelligence 
653 |a driving stress 
653 |a electrodermal activity 
653 |a road traffic 
653 |a road types 
653 |a Viola-Jones 
653 |a facial emotion recognition 
653 |a facial expression recognition 
653 |a facial detection 
653 |a facial landmarks 
653 |a infrared thermal imaging 
653 |a homography matrix 
653 |a socially assistive robot 
653 |a EEG 
653 |a arousal detection 
653 |a valence detection 
653 |a data transformation 
653 |a normalization 
653 |a mental stress detection 
653 |a electrocardiogram 
653 |a respiration 
653 |a in-ear EEG 
653 |a emotion classification 
653 |a emotion monitoring 
653 |a elderly caring 
653 |a outpatient caring 
653 |a stress detection 
653 |a deep neural network 
653 |a convolutional neural network 
653 |a wearable sensors 
653 |a psychophysiology 
653 |a sensor data analysis 
653 |a time series analysis 
653 |a signal analysis 
653 |a similarity measures 
653 |a correlation statistics 
653 |a quantitative analysis 
653 |a benchmarking 
653 |a boredom 
653 |a emotion 
653 |a GSR 
653 |a classification 
653 |a sensor 
653 |a face landmark detection 
653 |a fully convolutional DenseNets 
653 |a skip-connections 
653 |a dilated convolutions 
653 |a emotion recognition 
653 |a physiological sensing 
653 |a multimodal sensing 
653 |a flight simulation 
653 |a activity recognition 
653 |a physiological signals 
653 |a thoracic electrical bioimpedance 
653 |a smart band 
653 |a stress recognition 
653 |a physiological signal processing 
653 |a long short-term memory recurrent neural networks 
653 |a information fusion 
653 |a pain recognition 
653 |a long-term stress 
653 |a electroencephalography 
653 |a perceived stress scale 
653 |a expert evaluation 
653 |a affective corpus 
653 |a multimodal sensors 
653 |a overload 
653 |a underload 
653 |a interest 
653 |a frustration 
653 |a cognitive load 
653 |a stress research 
653 |a affective computing 
653 |a human-computer interaction 
653 |a deep convolutional neural network 
653 |a transfer learning 
653 |a auxiliary loss 
653 |a weighted loss 
653 |a class center 
653 |a stress sensing 
653 |a smart insoles 
653 |a smart shoes 
653 |a unobtrusive sensing 
653 |a stress 
653 |a center of pressure 
653 |a regression 
653 |a signal processing 
653 |a arousal 
653 |a aging adults 
653 |a musical genres 
653 |a emotion elicitation 
653 |a dataset 
653 |a emotion representation 
653 |a feature selection 
653 |a feature extraction 
653 |a computer science 
653 |a virtual reality 
653 |a head-mounted display 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3959  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76513  |7 0  |z DOAB: description of the publication