Biorefinery Current Status, Challenges, and New Strategies
Renewable fuels and chemicals derived from lignocellulosic biomass offer unprecedented opportunities for replacing fossil fuel derivatives, reducing our overdependence on imported oil, and mitigating current climate change trends. Despite technical developments and considerable efforts, breakthrough...
Saved in:
Other Authors: | , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel, Switzerland
MDPI - Multidisciplinary Digital Publishing Institute
2021
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_76528 | ||
005 | 20220111 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220111s2021 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-1509-0 | ||
020 | |a 9783036515106 | ||
020 | |a 9783036515090 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-1509-0 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
100 | 1 | |a Yoo, Chang Geun |4 edt | |
700 | 1 | |a Kim, Kwang Ho |4 edt | |
700 | 1 | |a Yoo, Chang Geun |4 oth | |
700 | 1 | |a Kim, Kwang Ho |4 oth | |
245 | 1 | 0 | |a Biorefinery |b Current Status, Challenges, and New Strategies |
260 | |a Basel, Switzerland |b MDPI - Multidisciplinary Digital Publishing Institute |c 2021 | ||
300 | |a 1 electronic resource (148 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Renewable fuels and chemicals derived from lignocellulosic biomass offer unprecedented opportunities for replacing fossil fuel derivatives, reducing our overdependence on imported oil, and mitigating current climate change trends. Despite technical developments and considerable efforts, breakthrough technologies are still required to overcome hurdles in developing sustainable biorefineries. In recent years, new biorefinery concepts including a lignin-first approach and a closed-loop biorefinery have been introduced to tackle technoeconomic challenges. Furthermore, researchers have advanced the development of new technologies which enable the utilization of biomass components for sustainable materials. It is now apparent that advanced processes are essential for ensuring the success of future biorefineries. This book presents processes for biomass fractionation, lignin valorization, and sugar conversion or introduces new bioproducts (chemicals and materials) from renewable resources, addressing the current status, technical/technoeconomic challenges, and new strategies. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
653 | |a Biomass | ||
653 | |a two-step pretreatment | ||
653 | |a steam explosion | ||
653 | |a organosolv treatment | ||
653 | |a empty fruit bunch | ||
653 | |a pinewood | ||
653 | |a green pretreatment | ||
653 | |a enzymatic hydrolysis | ||
653 | |a lignin structural features | ||
653 | |a poplar | ||
653 | |a FTIR | ||
653 | |a contaminants | ||
653 | |a by-products | ||
653 | |a lignin valorization | ||
653 | |a lignin applications | ||
653 | |a 3D printing | ||
653 | |a electrochemical material | ||
653 | |a medical application | ||
653 | |a drying effect | ||
653 | |a cellulose | ||
653 | |a hornification | ||
653 | |a porosity | ||
653 | |a bioethanol | ||
653 | |a economic analysis | ||
653 | |a hand sanitiser | ||
653 | |a oil palm empty fruit bunch (OPEFB) | ||
653 | |a simultaneous saccharification and fermentation | ||
653 | |a SuperPro Designer® | ||
653 | |a renewable fuel | ||
653 | |a high-density fuel | ||
653 | |a α-pinene dimerization | ||
653 | |a turpentine | ||
653 | |a stannic chloride molten salt hydrates | ||
653 | |a xylooligosaccharides | ||
653 | |a autohydrolysis | ||
653 | |a sweet sorghum bagasse | ||
653 | |a isobutanol | ||
653 | |a biorefinery | ||
653 | |a metabolic engineering | ||
653 | |a biomass utilization | ||
653 | |a aqueous biphasic system | ||
653 | |a dilute acid hydrolysate | ||
653 | |a furfural production | ||
653 | |a solvent extraction | ||
653 | |a response surface methodology | ||
653 | |a biomass fractionation | ||
653 | |a bioproducts | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/3974 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/76528 |7 0 |z DOAB: description of the publication |