EmbryoGenetics

The science of human genetics has advanced at an exponential pace since the double-helix structure of DNA was identified in 1953. Within only 25 years of that discovery, the first gene was sequenced. Subsequent efforts in the span of a few decades have brought advanced next-generation sequencing and...

Full description

Saved in:
Bibliographic Details
Other Authors: Simón, Carlos (Editor), Rubio, Carmen (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76548
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1153-5 
020 |a 9783036511528 
020 |a 9783036511535 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1153-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
100 1 |a Simón, Carlos  |4 edt 
700 1 |a Rubio, Carmen  |4 edt 
700 1 |a Simón, Carlos  |4 oth 
700 1 |a Rubio, Carmen  |4 oth 
245 1 0 |a EmbryoGenetics 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (176 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The science of human genetics has advanced at an exponential pace since the double-helix structure of DNA was identified in 1953. Within only 25 years of that discovery, the first gene was sequenced. Subsequent efforts in the span of a few decades have brought advanced next-generation sequencing and new tools for genome editing, allowing scientists to write and rewrite the code of life. We are now realizing that genetics represents yet another system of information technology that follows Moore's law, stating that computer processing power roughly doubles every two years. Importantly, with such rapid and sophisticated advancements, any tools or studies applicable to adult genetics can now also be applied to embryos.Genetic disorders affect 1% of live births and are responsible for 20% of pediatric hospitalizations and 20% of infant mortality. Many disorders are caused by recessive or X-linked genetic mutations carried by 85% of humans. Because assisted reproduction has armed us with technologies like in vitro fertilization that provide access to human embryos, we began to screen some genetic diseases simply by selecting sex. The first live births following preimplantation genetic testing (PGT) to identify sex in X-linked disease were reported by Alan Handyside in 1990. This groundbreaking work used the identification of male embryos and selective transfer of unaffected normal or carrier females as proof-of-concept to avoid genetic diseases, paving the way to extend the concept to PGT for monogenic diseases (PGT-M), including Mendelian single-gene defects (autosomal dominant/recessive, X-linked dominant/recessive), severe childhood lethality or early-onset disease, cancer predisposition, and HLA typing for histocompatible cord-blood stem cells' transplantation. Later, we moved onto the identification and selection of euploid embryos by analysing all 23 pairs of chromosomes in 4-8 cells from the trophectoderm, called PGT for aneuploidy (PGT-A). PGT-A currently leverages next-generation sequencing technologies to uncover meiotic- and mitotic-origin aneuploidies affecting whole chromosomes, as well as duplications/deletions of small chromosome regions. A step forward was the use of structural chromosome rearrangements (PGT-SR) to identify Robertsonian and reciprocal translocations, inversions, and balanced vs. unbalanced rearrangements. Another advancement came with PGT for polygenic risk scoring (PGT-P). This technique takes us from learning how to read simple words to starting to understand poetry (i.e., evolving from PGT-M/A/SR to PGT-P for multifactorial, polygenic risk prediction). Moreover, we are moving from embryo selection to intervention because the genetic code is not only readable, but also re-writeable. Indeed, gene editing is now possible using tools like CRISPR/Cas9, which are applicable to all species, including human embryos. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a extracellular vesicles 
653 |a exosomes 
653 |a microvesicles 
653 |a apoptotic bodies 
653 |a DNA 
653 |a preimplantation embryos 
653 |a murine blastocysts 
653 |a embryo 
653 |a uterus 
653 |a window of implantation 
653 |a PGT-A 
653 |a PGT-SR 
653 |a mosaicism 
653 |a embryo genetics 
653 |a chromosomal abnormality 
653 |a preimplantation genetic testing 
653 |a PGT-P 
653 |a polygenic risk scoring 
653 |a genomic index 
653 |a relative risk reduction 
653 |a combined preimplantation genetic testing 
653 |a Preimplantation genetic testing for monogenic disorders (PGT-M) 
653 |a Preimplantation genetic testing for aneuploidy assessment (PGT-A) 
653 |a Autosomal dominant polycystic kidney disease (ADPKD) 
653 |a male infertility 
653 |a advanced maternal age 
653 |a aneuploidy 
653 |a NGS 
653 |a segmental 
653 |a translocations 
653 |a monogenic disease 
653 |a multiplex PCR 
653 |a SNP array 
653 |a genome editing 
653 |a genetic diseases 
653 |a embryos 
653 |a vitrification 
653 |a ovarian response 
653 |a female age 
653 |a genetic testing 
653 |a reproductive health 
653 |a next-generation sequencing 
653 |a whole exome sequencing 
653 |a perinatal care 
653 |a infertility 
653 |a aneuploidies 
653 |a polygenic disease 
653 |a blastocyst 
653 |a endometrium 
653 |a implantation 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/3994  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76548  |7 0  |z DOAB: description of the publication