Artificial Neural Networks in Agriculture

Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial...

Full description

Saved in:
Bibliographic Details
Other Authors: Kujawa, Sebastian (Editor), Niedbała, Gniewko (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
UAV
CLQ
EBK
CNN
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76601
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1579-3 
020 |a 9783036515809 
020 |a 9783036515793 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1579-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PS  |2 bicssc 
072 7 |a T  |2 bicssc 
100 1 |a Kujawa, Sebastian  |4 edt 
700 1 |a Niedbała, Gniewko  |4 edt 
700 1 |a Kujawa, Sebastian  |4 oth 
700 1 |a Niedbała, Gniewko  |4 oth 
245 1 0 |a Artificial Neural Networks in Agriculture 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (283 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Biology, life sciences  |2 bicssc 
650 7 |a Technology, engineering, agriculture  |2 bicssc 
653 |a artificial neural network (ANN) 
653 |a Grain weevil identification 
653 |a neural modelling classification 
653 |a winter wheat 
653 |a grain 
653 |a artificial neural network 
653 |a ferulic acid 
653 |a deoxynivalenol 
653 |a nivalenol 
653 |a MLP network 
653 |a sensitivity analysis 
653 |a precision agriculture 
653 |a machine learning 
653 |a similarity 
653 |a metric 
653 |a memory 
653 |a deep learning 
653 |a plant growth 
653 |a dynamic response 
653 |a root zone temperature 
653 |a dynamic model 
653 |a NARX neural networks 
653 |a hydroponics 
653 |a vegetation indices 
653 |a UAV 
653 |a neural network 
653 |a corn plant density 
653 |a corn canopy cover 
653 |a yield prediction 
653 |a CLQ 
653 |a GA-BPNN 
653 |a GPP-driven spectral model 
653 |a rice phenology 
653 |a EBK 
653 |a correlation filter 
653 |a crop yield prediction 
653 |a hybrid feature extraction 
653 |a recursive feature elimination wrapper 
653 |a artificial neural networks 
653 |a big data 
653 |a classification 
653 |a high-throughput phenotyping 
653 |a modeling 
653 |a predicting 
653 |a time series forecasting 
653 |a soybean 
653 |a food production 
653 |a paddy rice mapping 
653 |a dynamic time warping 
653 |a LSTM 
653 |a weakly supervised learning 
653 |a cropland mapping 
653 |a apparent soil electrical conductivity (ECa) 
653 |a magnetic susceptibility (MS) 
653 |a EM38 
653 |a neural networks 
653 |a Phoenix dactylifera L. 
653 |a Medjool dates 
653 |a image classification 
653 |a convolutional neural networks 
653 |a transfer learning 
653 |a average degree of coverage 
653 |a coverage unevenness coefficient 
653 |a optimization 
653 |a high-resolution imagery 
653 |a oil palm tree 
653 |a CNN 
653 |a Faster-RCNN 
653 |a image identification 
653 |a agroecology 
653 |a weeds 
653 |a yield gap 
653 |a environment 
653 |a health 
653 |a crop models 
653 |a soil and plant nutrition 
653 |a automated harvesting 
653 |a model application for sustainable agriculture 
653 |a remote sensing for agriculture 
653 |a decision supporting systems 
653 |a neural image analysis 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4046  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76601  |7 0  |z DOAB: description of the publication