Sensors Fault Diagnosis Trends and Applications

Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is cl...

Full description

Saved in:
Bibliographic Details
Other Authors: Witczak, Piotr (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76611
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1049-1 
020 |a 9783036510484 
020 |a 9783036510491 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1049-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Witczak, Piotr  |4 edt 
700 1 |a Witczak, Piotr  |4 oth 
245 1 0 |a Sensors Fault Diagnosis Trends and Applications 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (236 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a rolling bearing 
653 |a performance degradation 
653 |a hybrid kernel function 
653 |a krill herd algorithm 
653 |a SVR 
653 |a acoustic-based diagnosis 
653 |a gear fault diagnosis 
653 |a attention mechanism 
653 |a convolutional neural network 
653 |a stacked auto-encoder 
653 |a weighting strategy 
653 |a deep learning 
653 |a bearing fault diagnosis 
653 |a intelligent leak detection 
653 |a acoustic emission signals 
653 |a statistical parameters 
653 |a support vector machine 
653 |a wavelet denoising 
653 |a Shannon entropy 
653 |a adaptive noise reducer 
653 |a gaussian reference signal 
653 |a gearbox fault diagnosis 
653 |a one against on multiclass support vector machine 
653 |a varying rotational speed 
653 |a fault detection and diagnosis 
653 |a faults estimation 
653 |a actuator and sensor fault 
653 |a observer design 
653 |a Takagi-Sugeno fuzzy systems 
653 |a automotive 
653 |a perception sensor 
653 |a lidar 
653 |a fault detection 
653 |a fault isolation 
653 |a fault identification 
653 |a fault recovery 
653 |a fault diagnosis 
653 |a fault detection and isolation (FDIR) 
653 |a autonomous vehicle 
653 |a model predictive control 
653 |a path tracking control 
653 |a fault detection and isolation 
653 |a braking control 
653 |a nonlinear systems 
653 |a fault tolerant control 
653 |a iterative learning control 
653 |a neural networks 
653 |a cryptography 
653 |a wireless sensor networks 
653 |a machine learning 
653 |a scan-chain diagnosis 
653 |a artificial neural network 
653 |a NARX 
653 |a control valve 
653 |a decision tree 
653 |a signature matrix 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4056  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76611  |7 0  |z DOAB: description of the publication