Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management.
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel, Switzerland
MDPI - Multidisciplinary Digital Publishing Institute
2021
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_76675 | ||
005 | 20220111 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220111s2021 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-1719-3 | ||
020 | |a 9783036517209 | ||
020 | |a 9783036517193 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-1719-3 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
100 | 1 | |a Kisi, Ozgur |4 edt | |
700 | 1 | |a Kisi, Ozgur |4 oth | |
245 | 1 | 0 | |a Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management |
260 | |a Basel, Switzerland |b MDPI - Multidisciplinary Digital Publishing Institute |c 2021 | ||
300 | |a 1 electronic resource (238 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
653 | |a groundwater | ||
653 | |a artificial intelligence | ||
653 | |a hydrologic model | ||
653 | |a groundwater level prediction | ||
653 | |a machine learning | ||
653 | |a principal component analysis | ||
653 | |a spatiotemporal variation | ||
653 | |a uncertainty analysis | ||
653 | |a hydroinformatics | ||
653 | |a support vector machine | ||
653 | |a big data | ||
653 | |a artificial neural network | ||
653 | |a nitrogen compound | ||
653 | |a nitrogen prediction | ||
653 | |a prediction models | ||
653 | |a neural network | ||
653 | |a non-linear modeling | ||
653 | |a PACF | ||
653 | |a WANN | ||
653 | |a SVM-LF | ||
653 | |a SVM-RF | ||
653 | |a Govindpur | ||
653 | |a streamflow forecasting | ||
653 | |a Bayesian model averaging | ||
653 | |a multivariate adaptive regression spline | ||
653 | |a M5 model tree | ||
653 | |a Kernel extreme learning machines | ||
653 | |a South Korea | ||
653 | |a uncertainty | ||
653 | |a sustainability | ||
653 | |a prediction intervals | ||
653 | |a ungauged basin | ||
653 | |a streamflow simulation | ||
653 | |a satellite precipitation | ||
653 | |a atmospheric reanalysis | ||
653 | |a ensemble modeling | ||
653 | |a additive regression | ||
653 | |a bagging | ||
653 | |a dagging | ||
653 | |a random subspace | ||
653 | |a rotation forest | ||
653 | |a flood routing | ||
653 | |a Muskingum method | ||
653 | |a extension principle | ||
653 | |a calibration | ||
653 | |a fuzzy sets and systems | ||
653 | |a particle swarm optimization | ||
653 | |a EEFlux | ||
653 | |a irrigation performance | ||
653 | |a CWP | ||
653 | |a water conservation | ||
653 | |a NDVI | ||
653 | |a water resources | ||
653 | |a Daymet V3 | ||
653 | |a Google Earth Engine | ||
653 | |a improved extreme learning machine (IELM) | ||
653 | |a sensitivity analysis | ||
653 | |a shortwave radiation flux density | ||
653 | |a sustainable development | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/4122 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/76675 |7 0 |z DOAB: description of the publication |