Advances in Remote Sensing for Global Forest Monitoring
The topics of the book cover forest parameter estimation, methods to assess land cover and change, forest disturbances and degradation, and forest soil drought estimations. Airborne laser scanner data, aerial images, as well as data from passive and active sensors of different spatial, spectral and...
Saved in:
Other Authors: | , , , |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel, Switzerland
MDPI - Multidisciplinary Digital Publishing Institute
2021
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_76724 | ||
005 | 20220111 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220111s2021 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-1253-2 | ||
020 | |a 9783036512525 | ||
020 | |a 9783036512532 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-1253-2 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
072 | 7 | |a KCN |2 bicssc | |
100 | 1 | |a Tomppo, Erkki |4 edt | |
700 | 1 | |a Praks, Jaan |4 edt | |
700 | 1 | |a Wang, Guangxing |4 edt | |
700 | 1 | |a Waser, Lars T. |4 edt | |
700 | 1 | |a Tomppo, Erkki |4 oth | |
700 | 1 | |a Praks, Jaan |4 oth | |
700 | 1 | |a Wang, Guangxing |4 oth | |
700 | 1 | |a Waser, Lars T. |4 oth | |
245 | 1 | 0 | |a Advances in Remote Sensing for Global Forest Monitoring |
260 | |a Basel, Switzerland |b MDPI - Multidisciplinary Digital Publishing Institute |c 2021 | ||
300 | |a 1 electronic resource (352 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The topics of the book cover forest parameter estimation, methods to assess land cover and change, forest disturbances and degradation, and forest soil drought estimations. Airborne laser scanner data, aerial images, as well as data from passive and active sensors of different spatial, spectral and temporal resolutions have been utilized. Parametric and non-parametric methods including machine and deep learning methods have been employed. Uncertainty estimation is a key topic in each study. In total, 15 articles are included, of which one is a review article dealing with methods employed in remote sensing aided greenhouse gas inventories, and one is the Editorial summary presenting a short review of each article. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
650 | 7 | |a Environmental economics |2 bicssc | |
653 | |a forest structure change | ||
653 | |a EBLUP | ||
653 | |a small area estimation | ||
653 | |a multitemporal LiDAR and stand-level estimates | ||
653 | |a forest cover | ||
653 | |a Sentinel-1 | ||
653 | |a Sentinel-2 | ||
653 | |a data fusion | ||
653 | |a machine-learning | ||
653 | |a Germany | ||
653 | |a South Africa | ||
653 | |a temperate forest | ||
653 | |a savanna | ||
653 | |a classification | ||
653 | |a Sentinel 2 | ||
653 | |a land use land cover | ||
653 | |a improved k-NN | ||
653 | |a logistic regression | ||
653 | |a random forest | ||
653 | |a support vector machine | ||
653 | |a statistical estimator | ||
653 | |a IPCC good practice guidelines | ||
653 | |a activity data | ||
653 | |a emissions factor | ||
653 | |a removals factor | ||
653 | |a Picea crassifolia Kom | ||
653 | |a compatible equation | ||
653 | |a nonlinear seemingly unrelated regression | ||
653 | |a error-in-variable modeling | ||
653 | |a leave-one-out cross-validation | ||
653 | |a digital surface model | ||
653 | |a digital terrain model | ||
653 | |a canopy height model | ||
653 | |a constrained neighbor interpolation | ||
653 | |a ordinary neighbor interpolation | ||
653 | |a point cloud density | ||
653 | |a stereo imagery | ||
653 | |a remotely sensed LAI | ||
653 | |a field measured LAI | ||
653 | |a validation | ||
653 | |a magnitude | ||
653 | |a uncertainty | ||
653 | |a temporal dynamics | ||
653 | |a state space models | ||
653 | |a forest disturbance mapping | ||
653 | |a near real-time monitoring | ||
653 | |a CUSUM | ||
653 | |a NRT monitoring | ||
653 | |a deforestation | ||
653 | |a degradation | ||
653 | |a tropical forest | ||
653 | |a tropical peat | ||
653 | |a forest type | ||
653 | |a deep learning | ||
653 | |a FCN8s | ||
653 | |a CRFasRNN | ||
653 | |a GF2 | ||
653 | |a dual-FCN8s | ||
653 | |a random forests | ||
653 | |a error propagation | ||
653 | |a bootstrapping | ||
653 | |a Landsat | ||
653 | |a LiDAR | ||
653 | |a La Rioja | ||
653 | |a forest area change | ||
653 | |a data assessment | ||
653 | |a uncertainty evaluation | ||
653 | |a inconsistency | ||
653 | |a forest monitoring | ||
653 | |a drought | ||
653 | |a time series satellite data | ||
653 | |a Bowen ratio | ||
653 | |a carbon flux | ||
653 | |a boreal forest | ||
653 | |a windstorm damage | ||
653 | |a synthetic aperture radar | ||
653 | |a C-band | ||
653 | |a genetic algorithm | ||
653 | |a multinomial logistic regression | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/4173 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/76724 |7 0 |z DOAB: description of the publication |