Intelligent Biosignal Analysis Methods

This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others.

Saved in:
Bibliographic Details
Other Authors: Jović, Alan (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76753
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1691-2 
020 |a 9783036516929 
020 |a 9783036516912 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1691-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
100 1 |a Jović, Alan  |4 edt 
700 1 |a Jović, Alan  |4 oth 
245 1 0 |a Intelligent Biosignal Analysis Methods 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (256 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
653 |a sleep stage scoring 
653 |a neural network-based refinement 
653 |a residual attention 
653 |a T-end annotation 
653 |a signal quality index 
653 |a tSQI 
653 |a optimal shrinkage 
653 |a emotion 
653 |a EEG 
653 |a DEAP 
653 |a CNN 
653 |a surgery image 
653 |a disgust 
653 |a autonomic nervous system 
653 |a electrocardiogram 
653 |a galvanic skin response 
653 |a olfactory training 
653 |a psychophysics 
653 |a smell 
653 |a wearable sensors 
653 |a wine sensory analysis 
653 |a accuracy 
653 |a convolution neural network (CNN) 
653 |a classifiers 
653 |a electrocardiography 
653 |a k-fold validation 
653 |a myocardial infarction 
653 |a sensitivity 
653 |a sleep staging 
653 |a electroencephalography (EEG) 
653 |a brain functional connectivity 
653 |a frequency band fusion 
653 |a phase-locked value (PLV) 
653 |a wearable device 
653 |a emotional state 
653 |a mental workload 
653 |a stress 
653 |a heart rate 
653 |a eye blinks rate 
653 |a skin conductance level 
653 |a emotion recognition 
653 |a electroencephalogram (EEG) 
653 |a photoplethysmography (PPG) 
653 |a machine learning 
653 |a feature extraction 
653 |a feature selection 
653 |a deep learning 
653 |a non-stationarity 
653 |a individual differences 
653 |a inter-subject variability 
653 |a covariate shift 
653 |a cross-participant 
653 |a inter-participant 
653 |a drowsiness detection 
653 |a EEG features 
653 |a drowsiness classification 
653 |a fatigue detection 
653 |a residual network 
653 |a Mish 
653 |a spatial transformer networks 
653 |a non-local attention mechanism 
653 |a Alzheimer's disease 
653 |a fall detection 
653 |a event-centered data segmentation 
653 |a accelerometer 
653 |a window duration 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4202  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76753  |7 0  |z DOAB: description of the publication