Data-Intensive Computing in Smart Microgrids

Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid adva...

Full description

Saved in:
Bibliographic Details
Other Authors: Herodotou, Herodotos (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76778
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1628-8 
020 |a 9783036516271 
020 |a 9783036516288 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1628-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Herodotou, Herodotos  |4 edt 
700 1 |a Herodotou, Herodotos  |4 oth 
245 1 0 |a Data-Intensive Computing in Smart Microgrids 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (238 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a electricity load forecasting 
653 |a smart grid 
653 |a feature selection 
653 |a Extreme Learning Machine 
653 |a Genetic Algorithm 
653 |a Support Vector Machine 
653 |a Grid Search 
653 |a AMI 
653 |a TL 
653 |a SG 
653 |a NB-PLC 
653 |a fog computing 
653 |a green community 
653 |a resource allocation 
653 |a processing time 
653 |a response time 
653 |a green data center 
653 |a microgrid 
653 |a renewable energy 
653 |a energy trade contract 
653 |a real time power management 
653 |a load forecasting 
653 |a optimization techniques 
653 |a deep learning 
653 |a big data analytics 
653 |a electricity theft detection 
653 |a smart grids 
653 |a electricity consumption 
653 |a electricity thefts 
653 |a smart meter 
653 |a imbalanced data 
653 |a data-intensive smart application 
653 |a cloud computing 
653 |a real-time systems 
653 |a multi-objective energy optimization 
653 |a renewable energy sources 
653 |a wind 
653 |a photovoltaic 
653 |a demand response programs 
653 |a energy management 
653 |a battery energy storage systems 
653 |a demand response 
653 |a scheduling 
653 |a automatic generation control 
653 |a single/multi-area power system 
653 |a intelligent control methods 
653 |a virtual inertial control 
653 |a soft computing control methods 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4227  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76778  |7 0  |z DOAB: description of the publication