Development of Unconventional Reservoirs 2020

The need for energy is increasing and at the same time production from the conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions the most approachable source is from u...

Full description

Saved in:
Bibliographic Details
Other Authors: Rezaee, Reza (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
NMR
CT
SEM
CBM
vug
FEM
EOR
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76812
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1754-4 
020 |a 9783036517537 
020 |a 9783036517544 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1754-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a TB  |2 bicssc 
100 1 |a Rezaee, Reza  |4 edt 
700 1 |a Rezaee, Reza  |4 oth 
245 1 0 |a Development of Unconventional Reservoirs 2020 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (748 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The need for energy is increasing and at the same time production from the conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions the most approachable source is from unconventional reservoirs. As the name "unconventional" implies it requires different and challenging approach to characterize and to develop such a resource. This special issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Technology: general issues  |2 bicssc 
653 |a bedding fractures 
653 |a failure criterion 
653 |a lamina 
653 |a tight oil 
653 |a tight sandstone 
653 |a finite element simulation 
653 |a numerical simulation 
653 |a unconventional reservoir 
653 |a permeability 
653 |a group method of data handling 
653 |a artificial neural network 
653 |a well logs 
653 |a sensitivity analysis 
653 |a tight gas reservoir 
653 |a multi-fractured horizontal well (MFHW) 
653 |a unstable productivity model 
653 |a productivity forecast 
653 |a influencing factor analysis 
653 |a horizontal well with multiple finite-conductivity fractures 
653 |a elliptical-shaped drainage 
653 |a productivity index 
653 |a non-Darcy flow 
653 |a pressure-dependent conductivity 
653 |a reservoir properties 
653 |a void space structure 
653 |a porosity 
653 |a complex rocks 
653 |a NMR 
653 |a MICP 
653 |a CT 
653 |a SEM 
653 |a coal-bearing tight sandstone 
653 |a organic-rich clasts 
653 |a occurrence 
653 |a classifications 
653 |a formation mechanisms 
653 |a Ordos Basin 
653 |a hydraulic fracturing 
653 |a fracturing fluids 
653 |a fluids-rock interaction 
653 |a environmental implication 
653 |a history matching 
653 |a semianalytic model 
653 |a unconventional gas reservoirs 
653 |a multistage fractured horizontal wells 
653 |a fractal theory 
653 |a pore structure 
653 |a heterogeneity 
653 |a NMR measurements 
653 |a multifractal analysis 
653 |a shale reservoir 
653 |a elastic properties 
653 |a brittleness 
653 |a rock physics 
653 |a brittle spot identification 
653 |a shale gas 
653 |a reservoir characteristics 
653 |a gas content 
653 |a eastern Sichuan Basin 
653 |a the Da'anzhai member 
653 |a pulse decay method 
653 |a gas adsorption 
653 |a dual media 
653 |a unconventional core 
653 |a natural fracture 
653 |a influencing factor 
653 |a oil production 
653 |a carbonate rock 
653 |a basement reservoir 
653 |a Jizhong Sub-basin 
653 |a dynamic pore network modeling 
653 |a shale reservoirs 
653 |a water imbibition 
653 |a discrete element method 
653 |a modified fluid-mechanical coupling algorithm 
653 |a injection sequence 
653 |a well spacing 
653 |a stress shadow effect 
653 |a seismic location 
653 |a microseismic events 
653 |a waveform stacking 
653 |a induced seismicity 
653 |a CBM 
653 |a surfactant 
653 |a solid-free drilling fluid 
653 |a CBM reservoir wettability 
653 |a machine learning 
653 |a lithofacies 
653 |a umiat 
653 |a Alaska 
653 |a proppant transportation 
653 |a cross fractures 
653 |a CFD simulation 
653 |a dimensional analysis 
653 |a equilibrium proppant height 
653 |a coalbed methane 
653 |a Lattice Boltzmann method 
653 |a gas diffusion 
653 |a adsorption-desorption 
653 |a pore-scale 
653 |a clay minerals 
653 |a pore structures 
653 |a tight gas reservoirs 
653 |a Xujiaweizi Rift 
653 |a Northern Songliao Basin 
653 |a methane adsorption isotherm 
653 |a coal properties 
653 |a gradient boosting decision tree 
653 |a estimation model 
653 |a shale gas reservoir 
653 |a geology 
653 |a Gibbs excess adsorption 
653 |a supercritical adsorption 
653 |a gas viscosity 
653 |a high voltage spark discharge 
653 |a electrohydraulic effect 
653 |a electrical conductivity 
653 |a drilling 
653 |a rock damage 
653 |a pressure waves 
653 |a water fracturing 
653 |a turbulence effect 
653 |a Eulerian multiphase modeling 
653 |a proppant transport mechanism 
653 |a equilibrium height prediction model 
653 |a adaptive filtering 
653 |a complex noise canceling 
653 |a electromagnetic telemetry 
653 |a multifractured horizontal wells 
653 |a production analysis 
653 |a irregular stimulated region 
653 |a natural gas hydrate 
653 |a seismic modeling 
653 |a fractional derivatives 
653 |a gas geochemical characteristics 
653 |a noble gas 
653 |a shale gas evolution 
653 |a Large Igneous Province (LIP) 
653 |a gas loss 
653 |a geological structure 
653 |a gas controlling pattern 
653 |a neutral surface 
653 |a tectonic movement 
653 |a Bumu region 
653 |a seismic interpretation 
653 |a depositional environments characteristics 
653 |a Wheeler diagram 
653 |a seismic attributes 
653 |a heterogeneous sequence 
653 |a sample size 
653 |a neutron scattering 
653 |a mercury injection capillary pressure 
653 |a adsorption 
653 |a shale 
653 |a junggar basin 
653 |a hong-che fault zone 
653 |a carboniferous 
653 |a volcanic reservoir 
653 |a main controlling factors of hydrocarbon accumulation 
653 |a fracture 
653 |a vug 
653 |a micro CT 
653 |a carbonate 
653 |a wave velocity 
653 |a amorphous SiO2 
653 |a X-ray diffraction 
653 |a X-ray fluorescence spectrometry 
653 |a scanning electron microscope 
653 |a quantitative analysis 
653 |a void ratio 
653 |a FEM 
653 |a ABAQUS 
653 |a matrix porosity 
653 |a kerogen porosity 
653 |a water saturation 
653 |a gas hydrate 
653 |a saturation 
653 |a deep learning 
653 |a recurrent neural network 
653 |a molecular simulation 
653 |a enhanced oil recovery 
653 |a methane 
653 |a shale petroleum 
653 |a technological development 
653 |a patent 
653 |a network analysis 
653 |a imbibition 
653 |a osmosis 
653 |a unconventional formations 
653 |a EOR 
653 |a water flooding 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4261  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76812  |7 0  |z DOAB: description of the publication