Efficient Technology for the Pretreatment of Biomass II

Biomass can be used as feedstock for the production of biomaterials, chemicals, platform molecules and biofuels. It is the most reliable alternative to reduce fossil fuel consumption and greenhouse gas emissions. Within the framework of the circular economy, resource recovery from organic waste, inc...

Full description

Saved in:
Bibliographic Details
Other Authors: Ferrer, Ivet (Editor), Eskicioglu, Cigdem (Editor), Antonopoulou, Georgia (Editor), Battimelli, Audrey (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_76880
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-1793-3 
020 |a 9783036517940 
020 |a 9783036517933 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-1793-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Ferrer, Ivet  |4 edt 
700 1 |a Eskicioglu, Cigdem  |4 edt 
700 1 |a Antonopoulou, Georgia  |4 edt 
700 1 |a Battimelli, Audrey  |4 edt 
700 1 |a Ferrer, Ivet  |4 oth 
700 1 |a Eskicioglu, Cigdem  |4 oth 
700 1 |a Antonopoulou, Georgia  |4 oth 
700 1 |a Battimelli, Audrey  |4 oth 
245 1 0 |a Efficient Technology for the Pretreatment of Biomass II 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (255 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Biomass can be used as feedstock for the production of biomaterials, chemicals, platform molecules and biofuels. It is the most reliable alternative to reduce fossil fuel consumption and greenhouse gas emissions. Within the framework of the circular economy, resource recovery from organic waste, including sewage sludge, biowaste, manure and slaughterhouse waste, is particularly useful, as it helps saving resources while reducing environmental pollution. In contrast to energy crops, lignocellulosic biomass and algae do not compete for food production; therefore, they represent an important source of biomass for bioenergy and bioproducts. However, biomass may require a pretreatment step in order to enhance its conversion into valuable products in terms of process yield and/or productivity. Furthermore, a pretreatment step may be mandatory for waste management (i.e., animal by-products).Pretreatment technologies are applied upstream of various conversion processes of biomass into biofuels or biomaterials, including bioethanol, biohydrogen, biomethane, biomolecules or bioproducts. Pretreatments may include mechanical, thermal, chemical and biological techniques, which represent a crucial, cost-intensive step for the development of biorefineries. Thus, research is needed to help identify the most effective, economic, and environmentally friendly pretreatment options for each feedstock. This Special Issue aims to gather recent developments of biomass pretreatments for bioproduct and biofuel production. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a biomass 
653 |a valorisation 
653 |a ionic liquid 
653 |a crystallinity 
653 |a enzymatic hydrolysis 
653 |a pre-treatment 
653 |a acidogenic fermentation 
653 |a hydrothermal treatment 
653 |a source separated organics 
653 |a volatile fatty acids 
653 |a particulate organics solubilization 
653 |a microbial community analysis 
653 |a Pennisetum alopecuroides 
653 |a dilute alkaline pretreatment 
653 |a ferric chloride pretreatment 
653 |a bioethanol 
653 |a biomethane 
653 |a citrus peel waste 
653 |a biorefinery 
653 |a biorefinery residues 
653 |a ADM1 
653 |a anaerobic digestion 
653 |a aqueous ammonia soaking pre-treatment 
653 |a continuous 
653 |a digested manure fibers 
653 |a modelling 
653 |a acetic acid 
653 |a butyric acid 
653 |a HRT 
653 |a pH 
653 |a propionic acid 
653 |a steam treatment 
653 |a pretreatment 
653 |a lignocellulose 
653 |a biochemical methane potential 
653 |a lithium 
653 |a sugarcane bagasse 
653 |a saccharification 
653 |a glycosyl-hydrolase 
653 |a ToF-SIMS 
653 |a surface ion distribution 
653 |a second-generation ethanol 
653 |a microwave pretreatment 
653 |a grass biomass 
653 |a p-hydroxycinnamic acids extraction 
653 |a lignocellulosic biomass 
653 |a NaOH pretreatment 
653 |a bioreactor experiments 
653 |a inhibition 
653 |a grass lawn waste 
653 |a whole slurry 
653 |a separated fractions 
653 |a alkali 
653 |a acid 
653 |a energy balance 
653 |a economical assessment 
653 |a municipal sludge 
653 |a thermal pretreatment 
653 |a microwave 
653 |a contaminants of emerging concern 
653 |a personal care products 
653 |a antimicrobial disinfectants 
653 |a triclosan 
653 |a ultra-high performance liquid chromatography 
653 |a tandem mass spectrometry 
653 |a biogas production 
653 |a fruit and vegetable harvesting wastes 
653 |a process optimization 
653 |a thermo chemical pretreatment 
653 |a biogas yield 
653 |a waste activated sludge 
653 |a electro-Fenton 
653 |a disintegration 
653 |a dewaterability 
653 |a mechanical pretreatments 
653 |a agricultural wastes 
653 |a rheology 
653 |a physical properties 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4350  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/76880  |7 0  |z DOAB: description of the publication