Advanced Computational Methods for Oncological Image Analysis

[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. T...

Full description

Saved in:
Bibliographic Details
Other Authors: Rundo, Leonardo (Editor), Militello, Carmelo (Editor), Conti, Vincenzo (Editor), Zaccagna, Fulvio (Editor), Han, Changhee (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_77043
005 20220111
003 oapen
006 m o d
007 cr|mn|---annan
008 20220111s2021 xx |||||o ||| 0|eng d
020 |a books978-3-0365-2555-6 
020 |a 9783036525549 
020 |a 9783036525556 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-2555-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Rundo, Leonardo  |4 edt 
700 1 |a Militello, Carmelo  |4 edt 
700 1 |a Conti, Vincenzo  |4 edt 
700 1 |a Zaccagna, Fulvio  |4 edt 
700 1 |a Han, Changhee  |4 edt 
700 1 |a Rundo, Leonardo  |4 oth 
700 1 |a Militello, Carmelo  |4 oth 
700 1 |a Conti, Vincenzo  |4 oth 
700 1 |a Zaccagna, Fulvio  |4 oth 
700 1 |a Han, Changhee  |4 oth 
245 1 0 |a Advanced Computational Methods for Oncological Image Analysis 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (262 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians' unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations-such as segmentation, co-registration, classification, and dimensionality reduction-and multi-omics data integration.] 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a melanoma detection 
653 |a deep learning 
653 |a transfer learning 
653 |a ensemble classification 
653 |a 3D-CNN 
653 |a immunotherapy 
653 |a radiomics 
653 |a self-attention 
653 |a breast imaging 
653 |a microwave imaging 
653 |a image reconstruction 
653 |a segmentation 
653 |a unsupervised machine learning 
653 |a k-means clustering 
653 |a Kolmogorov-Smirnov hypothesis test 
653 |a statistical inference 
653 |a performance metrics 
653 |a contrast source inversion 
653 |a brain tumor segmentation 
653 |a magnetic resonance imaging 
653 |a survey 
653 |a brain MRI image 
653 |a tumor region 
653 |a skull stripping 
653 |a region growing 
653 |a U-Net 
653 |a BRATS dataset 
653 |a incoherent imaging 
653 |a clutter rejection 
653 |a breast cancer detection 
653 |a MRgFUS 
653 |a proton resonance frequency shift 
653 |a temperature variations 
653 |a referenceless thermometry 
653 |a RBF neural networks 
653 |a interferometric optical fibers 
653 |a breast cancer 
653 |a risk assessment 
653 |a machine learning 
653 |a texture 
653 |a mammography 
653 |a medical imaging 
653 |a imaging biomarkers 
653 |a bone scintigraphy 
653 |a prostate cancer 
653 |a semisupervised classification 
653 |a false positives reduction 
653 |a computer-aided detection 
653 |a breast mass 
653 |a mass detection 
653 |a mass segmentation 
653 |a Mask R-CNN 
653 |a dataset partition 
653 |a brain tumor 
653 |a classification 
653 |a shallow machine learning 
653 |a breast cancer diagnosis 
653 |a Wisconsin Breast Cancer Dataset 
653 |a feature selection 
653 |a dimensionality reduction 
653 |a principal component analysis 
653 |a ensemble method 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4653  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/77043  |7 0  |z DOAB: description of the publication