Mathematical Modelling and Machine Learning Methods for Bioinformatics and Data Science Applications

Mathematical modeling is routinely used in physical and engineering sciences to help understand complex systems and optimize industrial processes. Mathematical modeling differs from Artificial Intelligence because it does not exclusively use the collected data to describe an industrial phenomenon or...

Full description

Saved in:
Bibliographic Details
Other Authors: Bianchini, Monica (Editor), Sampoli, Maria Lucia (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_78734
005 20220224
003 oapen
006 m o d
007 cr|mn|---annan
008 20220224s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-2841-0 
020 |a 9783036528410 
020 |a 9783036528403 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-2841-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
100 1 |a Bianchini, Monica  |4 edt 
700 1 |a Sampoli, Maria Lucia  |4 edt 
700 1 |a Bianchini, Monica  |4 oth 
700 1 |a Sampoli, Maria Lucia  |4 oth 
245 1 0 |a Mathematical Modelling and Machine Learning Methods for Bioinformatics and Data Science Applications 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (102 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Mathematical modeling is routinely used in physical and engineering sciences to help understand complex systems and optimize industrial processes. Mathematical modeling differs from Artificial Intelligence because it does not exclusively use the collected data to describe an industrial phenomenon or process, but it is based on fundamental laws of physics or engineering that lead to systems of equations able to represent all the variables that characterize the process. Conversely, Machine Learning methods require a large amount of data to find solutions, remaining detached from the problem that generated them and trying to infer the behavior of the object, material or process to be examined from observed samples. Mathematics allows us to formulate complex models with effectiveness and creativity, describing nature and physics. Together with the potential of Artificial Intelligence and data collection techniques, a new way of dealing with practical problems is possible. The insertion of the equations deriving from the physical world in the data-driven models can in fact greatly enrich the information content of the sampled data, allowing to simulate very complex phenomena, with drastically reduced calculation times. Combined approaches will constitute a breakthrough in cutting-edge applications, providing precise and reliable tools for the prediction of phenomena in biological macro/microsystems, for biotechnological applications and for medical diagnostics, particularly in the field of precision medicine. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Mathematics & science  |2 bicssc 
653 |a algorithm 
653 |a identification 
653 |a Alzheimer 
653 |a predator-prey model 
653 |a herd behaviour 
653 |a herd shape 
653 |a linear functional response 
653 |a Holling type II functional response 
653 |a bifurcation analysis 
653 |a deep learning 
653 |a convolutional neural networks 
653 |a semantic segmentation 
653 |a generative adversarial networks 
653 |a chest X-ray 
653 |a image augmentation 
653 |a tropospheric ozone 
653 |a machine learning 
653 |a El Paso-Juarez 
653 |a semi-arid climate 
653 |a visual sequential search test 
653 |a episode matching 
653 |a trail making test 
653 |a sequence alignment 
653 |a alignment score 
653 |a eye tracking 
653 |a Til Making Test 
653 |a neurological diseases 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4825  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/78734  |7 0  |z DOAB: description of the publication