Hypoxia-Inducible Factors Regulation and Therapeutic Potential

Oxygen is an essential molecule in the production of adenosine triphosphate (ATP) in cells, and a lack of energy due to O2 deficiency makes the maintenance of biological functions and human life improbable. Since oxygen functions as the final electron acceptor in the series of ATP synthesis reaction...

Full description

Saved in:
Bibliographic Details
Other Authors: Hirota, Kiichi (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_78747
005 20220224
003 oapen
006 m o d
007 cr|mn|---annan
008 20220224s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-2913-4 
020 |a 9783036529134 
020 |a 9783036529127 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-2913-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Hirota, Kiichi  |4 edt 
700 1 |a Hirota, Kiichi  |4 oth 
245 1 0 |a Hypoxia-Inducible Factors  |b Regulation and Therapeutic Potential 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (200 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Oxygen is an essential molecule in the production of adenosine triphosphate (ATP) in cells, and a lack of energy due to O2 deficiency makes the maintenance of biological functions and human life improbable. Since oxygen functions as the final electron acceptor in the series of ATP synthesis reactions in conjunction with oxidative phosphorylation in mitochondria, its deficiency causes the oxidation of a series of coenzymes, such as nicotinamide and flavin adenine dinucleotide, and the reduction in oxygen molecules to water molecules (H2O). Persistent deficiency has been believed to cause a loss of biological functions, even resulting in death. This classical view of oxygen has been completely revised over the last 20 years. Mammals do not have a mechanism for biosynthesizing oxygen in their bodies. In higher organisms such as vertebrates, which possess many organs, oxygen in the body is always "scarce,"; therefore, the dominant view is that organisms have evolved mechanisms to respond to the lack of this essential molecule (hypoxia), and actively use it to maintain bodily integrity. Anatomically complex, higher multicellular organisms are equipped with specialized mechanisms to enable all cells to obtain sufficient oxygen. The respiratory system consists of lungs, which provide oxygen to be transferred to hemoglobin in red blood cells, the diaphragm, other respiratory support muscles, and neuroepithelial cells that sense the partial pressure of oxygen. The cardiovascular system consists of red blood cells, an oxygen-carrying medium, the heart, the transport engine, blood vessels, and transport channels. The proper development and preservation of these systems requires the harmonious expression of thousands of genes. The transcription factor responsible for this gene expression is hypoxia-inducible factor 1 (HIF-1). In this Special Issue, we invited research and review papers on various areas of oxygen biology research that focused on the fundamental understanding of HIF signaling pathways and related gene expression profiling, as well as pharmacogenomic biomarkers, molecular targets driving the regulation of human physiology and pathophysiology, and validation in animal models. We have published six original papers and three review articles in this Special Issue. We hope that this Special Issue will reflect the current exciting research concerning HIFs and their applications in medicine and health science. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a hypoxia 
653 |a transcriptome 
653 |a RNA-seq 
653 |a ChIP-seq 
653 |a public database 
653 |a meta-analysis 
653 |a peripheral blood cells 
653 |a blood-derived therapy 
653 |a angiogenesis 
653 |a platelet rich plasma (PRP) 
653 |a hypoxia preconditioned plasma 
653 |a hypoxia preconditioned serum 
653 |a transcription factor 
653 |a hypoxia-inducible factor 1 
653 |a HIF-1 
653 |a hypoxia sensing 
653 |a acetylsalicylic acid 
653 |a COX-1 
653 |a clopidogrel 
653 |a drug anticoagulation 
653 |a NOACs 
653 |a oral anticoagulation 
653 |a VEGF 
653 |a adipose-derived stem cells 
653 |a adipose-derived cell supension 
653 |a lymphangiogenesis 
653 |a lymphatic regeneration 
653 |a macrophage 
653 |a matrix metalloproteinase 
653 |a atherosclerotic plaque rupture 
653 |a oxidative stress 
653 |a xanthine oxidase 
653 |a HIF 
653 |a T cells 
653 |a B cells 
653 |a monocytes 
653 |a macrophages 
653 |a neutrophils 
653 |a ILC 
653 |a oxygen 
653 |a HIF-PH inhibitor 
653 |a gene2pubmed 
653 |a bibliome 
653 |a signature genes 
653 |a GPR146 
653 |a enrichment analysis 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4839  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/78747  |7 0  |z DOAB: description of the publication