Flash Memory Devices

Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration...

Full description

Saved in:
Bibliographic Details
Other Authors: Zambelli, Cristian (Editor), Micheloni, Rino (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_79581
005 20220321
003 oapen
006 m o d
007 cr|mn|---annan
008 20220321s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-3013-0 
020 |a 9783036530123 
020 |a 9783036530130 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-3013-0  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
100 1 |a Zambelli, Cristian  |4 edt 
700 1 |a Micheloni, Rino  |4 edt 
700 1 |a Zambelli, Cristian  |4 oth 
700 1 |a Micheloni, Rino  |4 oth 
245 1 0 |a Flash Memory Devices 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (144 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today "3D" means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a retention characteristic 
653 |a high-κ 
653 |a nonvolatile charge-trapping memory 
653 |a stack engineering 
653 |a NOR flash memory 
653 |a aluminum oxide 
653 |a NAND flash memory 
653 |a interference 
653 |a Technology Computer Aided Design (TCAD) simulation 
653 |a disturbance 
653 |a program 
653 |a non-volatile memory (NVM) 
653 |a 3D NAND Flash memories 
653 |a random telegraph noise 
653 |a Flash memory reliability 
653 |a test platform 
653 |a endurance 
653 |a support vector machine 
653 |a raw bit error 
653 |a 3D NAND Flash 
653 |a RBER 
653 |a reliability 
653 |a flash signal processing 
653 |a randomization scheme 
653 |a solid-state drives 
653 |a 3D flash memory 
653 |a performance cliff 
653 |a tail latency 
653 |a garbage collection 
653 |a artificial neural network 
653 |a error correction code 
653 |a work function 
653 |a effective work function 
653 |a dipole 
653 |a metal gate 
653 |a high-k 
653 |a SiO2 
653 |a interfacial reaction 
653 |a MHONOS 
653 |a erase performance 
653 |a 3D NAND flash memory 
653 |a temperature 
653 |a read disturb 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/4961  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/79581  |7 0  |z DOAB: description of the publication