The Statistical Foundations of Entropy

In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory...

Full description

Saved in:
Bibliographic Details
Other Authors: Jizba, Petr (Editor), Korbel, Jan (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_80958
005 20220506
003 oapen
006 m o d
007 cr|mn|---annan
008 20220506s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-3558-6 
020 |a 9783036535579 
020 |a 9783036535586 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-3558-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a P  |2 bicssc 
100 1 |a Jizba, Petr  |4 edt 
700 1 |a Korbel, Jan  |4 edt 
700 1 |a Jizba, Petr  |4 oth 
700 1 |a Korbel, Jan  |4 oth 
245 1 0 |a The Statistical Foundations of Entropy 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (182 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory, and non-Shannonian information theory. The usual Boltzmann-Gibbs statistics were proven to be grossly inadequate in this context. While successful in describing stationary systems characterized by ergodicity or metric transitivity, Boltzmann-Gibbs statistics fail to reproduce the complex statistical behavior of many real-world systems in biology, astrophysics, geology, and the economic and social sciences.The aim of this Special Issue was to extend the state of the art by original contributions that could contribute to an ongoing discussion on the statistical foundations of entropy, with a particular emphasis on non-conventional entropies that go significantly beyond Boltzmann, Gibbs, and Shannon paradigms. The accepted contributions addressed various aspects including information theoretic, thermodynamic and quantum aspects of complex systems and found several important applications of generalized entropies in various systems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Mathematics & science  |2 bicssc 
653 |a ecological inference 
653 |a generalized cross entropy 
653 |a distributional weighted regression 
653 |a matrix adjustment 
653 |a entropy 
653 |a critical phenomena 
653 |a renormalization 
653 |a multiscale thermodynamics 
653 |a GENERIC 
653 |a non-Newtonian calculus 
653 |a non-Diophantine arithmetic 
653 |a Kolmogorov-Nagumo averages 
653 |a escort probabilities 
653 |a generalized entropies 
653 |a maximum entropy principle 
653 |a MaxEnt distribution 
653 |a calibration invariance 
653 |a Lagrange multipliers 
653 |a generalized Bilal distribution 
653 |a adaptive Type-II progressive hybrid censoring scheme 
653 |a maximum likelihood estimation 
653 |a Bayesian estimation 
653 |a Lindley's approximation 
653 |a confidence interval 
653 |a Markov chain Monte Carlo method 
653 |a Rényi entropy 
653 |a Tsallis entropy 
653 |a entropic uncertainty relations 
653 |a quantum metrology 
653 |a non-equilibrium thermodynamics 
653 |a variational entropy 
653 |a rényi entropy 
653 |a tsallis entropy 
653 |a landsberg-vedral entropy 
653 |a gaussian entropy 
653 |a sharma-mittal entropy 
653 |a α-mutual information 
653 |a α-channel capacity 
653 |a maximum entropy 
653 |a Bayesian inference 
653 |a updating probabilities 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5297  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/80958  |7 0  |z DOAB: description of the publication