Recent Trends in Computational Research on Diseases

Recent advances in information technology have brought forth a paradigm shift in science, especially in the biology and medical fields. Statistical methodologies based on high-performance computing and big data analysis are now indispensable for the qualitative and quantitative understanding of expe...

Full description

Saved in:
Bibliographic Details
Other Authors: Altaf-Ul-Amin, Md (Editor), Kanaya, Shigehiko (Editor), Ono, Naoaki (Editor), Huang, Ming (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_81117
005 20220506
003 oapen
006 m o d
007 cr|mn|---annan
008 20220506s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-3231-8 
020 |a 9783036532301 
020 |a 9783036532318 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-3231-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Altaf-Ul-Amin, Md.  |4 edt 
700 1 |a Kanaya, Shigehiko  |4 edt 
700 1 |a Ono, Naoaki  |4 edt 
700 1 |a Huang, Ming  |4 edt 
700 1 |a Altaf-Ul-Amin, Md.  |4 oth 
700 1 |a Kanaya, Shigehiko  |4 oth 
700 1 |a Ono, Naoaki  |4 oth 
700 1 |a Huang, Ming  |4 oth 
245 1 0 |a Recent Trends in Computational Research on Diseases 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (130 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Recent advances in information technology have brought forth a paradigm shift in science, especially in the biology and medical fields. Statistical methodologies based on high-performance computing and big data analysis are now indispensable for the qualitative and quantitative understanding of experimental results. In fact, the last few decades have witnessed drastic improvements in high-throughput experiments in health science, for example, mass spectrometry, DNA microarray, next generation sequencing, etc. Those methods have been providing massive data involving four major branches of omics (genomics, transcriptomics, proteomics, and metabolomics). Information about amino acid sequences, protein structures, and molecular structures are fundamental data for the prediction of bioactivity of chemical compounds when screening drugs. On the other hand, cell imaging, clinical imaging, and personal healthcare devices are also providing important data concerning the human body and disease. In parallel, various methods of mathematical modelling such as machine learning have developed rapidly. All of these types of data can be utilized in computational approaches to understand disease mechanisms, diagnosis, prognosis, drug discovery, drug repositioning, disease biomarkers, driver mutations, copy number variations, disease pathways, and much more. In this Special Issue, we have published 8 excellent papers dedicated to a variety of computational problems in the biomedical field from the genomic level to the whole-person physiological level. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a water temperature 
653 |a bathing 
653 |a ECG 
653 |a heart rate variability 
653 |a quantitative analysis 
653 |a t-test 
653 |a hypertrophic cardiomyopathy 
653 |a data mining 
653 |a automated curation 
653 |a molecular mechanisms 
653 |a atrial fibrillation 
653 |a sudden cardiac death 
653 |a heart failure 
653 |a left ventricular outflow tract obstruction 
653 |a cardiac fibrosis 
653 |a myocardial ischemia 
653 |a compound-protein interaction 
653 |a Jamu 
653 |a machine learning 
653 |a drug discovery 
653 |a herbal medicine 
653 |a data augmentation 
653 |a deep learning 
653 |a ECG quality assessment 
653 |a drug-target interactions 
653 |a protein-protein interactions 
653 |a chronic diseases 
653 |a drug repurposing 
653 |a maximum flow 
653 |a adenosine methylation 
653 |a m6A 
653 |a RNA modification 
653 |a neuronal development 
653 |a genetic variation 
653 |a copy number variants 
653 |a disease-related traits 
653 |a sequential order 
653 |a association test 
653 |a blood pressure 
653 |a cuffless measurement 
653 |a longitudinal experiment 
653 |a plethysmograph 
653 |a nonlinear regression 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5146  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/81117  |7 0  |z DOAB: description of the publication