Advances in Mobile Mapping Technologies

Mobile mapping is applied widely in society, for example, in asset management, fleet management, construction planning, road safety, and maintenance optimization. Yet, further advances in these technologies are called for. Advances can be radical, such as changes to the prevailing paradigms in mobil...

Full description

Saved in:
Bibliographic Details
Other Authors: Lehtola, Ville (Editor), Nüchter, Andreas (Editor), Goulette, François (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_81174
005 20220506
003 oapen
006 m o d
007 cr|mn|---annan
008 20220506s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-3489-3 
020 |a 9783036534909 
020 |a 9783036534893 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-3489-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Lehtola, Ville  |4 edt 
700 1 |a Nüchter, Andreas  |4 edt 
700 1 |a Goulette, François  |4 edt 
700 1 |a Lehtola, Ville  |4 oth 
700 1 |a Nüchter, Andreas  |4 oth 
700 1 |a Goulette, François  |4 oth 
245 1 0 |a Advances in Mobile Mapping Technologies 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (268 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Mobile mapping is applied widely in society, for example, in asset management, fleet management, construction planning, road safety, and maintenance optimization. Yet, further advances in these technologies are called for. Advances can be radical, such as changes to the prevailing paradigms in mobile mapping, or incremental, such as the state-of-the-art mobile mapping methods. With current multi-sensor systems in mobile mapping, laser-scanned data are often registered in point clouds with the aid of global navigation satellite system (GNSS) positioning or simultaneous localization and mapping (SLAM) techniques and then labeled and colored with the aid of machine learning methods and digital camera data. These multi-sensor platforms are beginning to undergo further advancements via the addition of multi-spectral and other sensors and via the development of machine learning techniques used in processing this multi-modal data. Embedded systems and minimalistic system designs are also attracting attention, from both academic and commercial perspectives.This book contains the accepted publications of the Special Issue 'Advances in Mobile Mapping Technologies' of the Remote Sensing journal. It consists of works introducing a new mobile mapping dataset ('Paris CARLA 3D'), system calibration studies, SLAM topics, and multiple deep learning works for asset detection. We, the Guest Editors, Ville Lehtola from University of Twente, Netherlands, Andreas Nüchter from University of Würzburg, Germany, and François Goulette from Mines Paris- PSL University, France, wish to thank all the authors who contributed to this collection. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a LiDAR 
653 |a RetinaNet 
653 |a inception 
653 |a Mobile Laser Scanning 
653 |a point clouds 
653 |a data fusion 
653 |a Lidar 
653 |a point cloud density 
653 |a point cloud coverage 
653 |a mobile mapping systems 
653 |a 3D simulation 
653 |a Pandar64 
653 |a Ouster OS-1-64 
653 |a mobile laser scanning 
653 |a lever arm 
653 |a boresight angles 
653 |a plane-based calibration field 
653 |a configuration analysis 
653 |a accuracy 
653 |a controllability 
653 |a evaluation 
653 |a control points 
653 |a TLS reference point clouds 
653 |a visual-inertial odometry 
653 |a Helmert variance component estimation 
653 |a line feature matching method 
653 |a correlation coefficient 
653 |a point and line features 
653 |a mobile mapping 
653 |a manhole cover 
653 |a point cloud 
653 |a F-CNN 
653 |a transfer learning 
653 |a CAM localization 
653 |a loop closure detection 
653 |a visual SLAM 
653 |a semantic topology graph 
653 |a graph matching 
653 |a CNN features 
653 |a deep learning 
653 |a view planning 
653 |a imaging network design 
653 |a building 3D modelling 
653 |a path planning 
653 |a V-SLAM 
653 |a real-time 
653 |a guidance 
653 |a embedded-systems 
653 |a 3D surveying 
653 |a exposure control 
653 |a photogrammetry 
653 |a parking statistics 
653 |a vehicle detection 
653 |a robot operating system 
653 |a 3D camera 
653 |a RGB-D 
653 |a performance evaluation 
653 |a convolutional neural networks 
653 |a smart city 
653 |a georeferencing 
653 |a MSS 
653 |a IEKF 
653 |a DSIEKF 
653 |a geometrical constraints 
653 |a 6-DoF 
653 |a DTM 
653 |a 3D city model 
653 |a dataset 
653 |a laser scanning 
653 |a 3D mapping 
653 |a synthetic 
653 |a outdoor 
653 |a semantic 
653 |a scene completion 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5205  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/81174  |7 0  |z DOAB: description of the publication