Signal Processing Using Non-invasive Physiological Sensors
Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieve...
Збережено в:
Інші автори: | , , |
---|---|
Формат: | Електронний ресурс Частина з книги |
Мова: | Англійська |
Опубліковано: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Предмети: | |
Онлайн доступ: | DOAB: download the publication DOAB: description of the publication |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_81209 | ||
005 | 20220506 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220506s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-3719-1 | ||
020 | |a 9783036537207 | ||
020 | |a 9783036537191 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-3719-1 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a MBG |2 bicssc | |
100 | 1 | |a Niazi, Imran Khan |4 edt | |
700 | 1 | |a Naseer, Noman |4 edt | |
700 | 1 | |a Santosa, Hendrik |4 edt | |
700 | 1 | |a Niazi, Imran Khan |4 oth | |
700 | 1 | |a Naseer, Noman |4 oth | |
700 | 1 | |a Santosa, Hendrik |4 oth | |
245 | 1 | 0 | |a Signal Processing Using Non-invasive Physiological Sensors |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (222 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Medical equipment & techniques |2 bicssc | |
653 | |a movement intention | ||
653 | |a brain-computer interface | ||
653 | |a movement-related cortical potential | ||
653 | |a neurorehabilitation | ||
653 | |a phonocardiogram | ||
653 | |a machine learning | ||
653 | |a empirical mode decomposition | ||
653 | |a feature extraction | ||
653 | |a mel-frequency cepstral coefficients | ||
653 | |a support vector machines | ||
653 | |a computer aided diagnosis | ||
653 | |a congenital heart disease | ||
653 | |a statistical analysis | ||
653 | |a convolutional neural network (CNN) | ||
653 | |a long short-term memory (LSTM) | ||
653 | |a emotion recognition | ||
653 | |a EEG | ||
653 | |a ECG | ||
653 | |a GSR | ||
653 | |a deep neural network | ||
653 | |a physiological signals | ||
653 | |a electroencephalography | ||
653 | |a Brain-Computer Interface | ||
653 | |a multiscale principal component analysis | ||
653 | |a successive decomposition index | ||
653 | |a motor imagery | ||
653 | |a mental imagery | ||
653 | |a classification | ||
653 | |a hybrid brain-computer interface (BCI) | ||
653 | |a home automation | ||
653 | |a electroencephalogram (EEG) | ||
653 | |a steady-state visually evoked potential (SSVEP) | ||
653 | |a eye blink | ||
653 | |a short-time Fourier transform (STFT) | ||
653 | |a convolution neural network (CNN) | ||
653 | |a human machine interface (HMI) | ||
653 | |a rehabilitation | ||
653 | |a wheelchair | ||
653 | |a quadriplegia | ||
653 | |a Raspberry Pi | ||
653 | |a image gradient | ||
653 | |a AMR voice | ||
653 | |a Open-CV | ||
653 | |a image processing | ||
653 | |a acoustic | ||
653 | |a startle | ||
653 | |a reaction | ||
653 | |a response | ||
653 | |a reflex | ||
653 | |a blink | ||
653 | |a mobile | ||
653 | |a sound | ||
653 | |a stroke | ||
653 | |a EMG | ||
653 | |a brain-computer interface | ||
653 | |a myoelectric control | ||
653 | |a pattern recognition | ||
653 | |a functional near-infrared spectroscopy | ||
653 | |a z-score method | ||
653 | |a channel selection | ||
653 | |a region of interest | ||
653 | |a channel of interest | ||
653 | |a respiratory rate (RR) | ||
653 | |a Electrocardiogram (ECG) | ||
653 | |a ECG derived respiration (EDR) | ||
653 | |a auscultation sites | ||
653 | |a pulse plethysmograph | ||
653 | |a biomedical signal processing | ||
653 | |a feature selection and reduction | ||
653 | |a discrete wavelet transform | ||
653 | |a hypertension | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/5241 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/81209 |7 0 |z DOAB: description of the publication |