Chapter Random effects regression trees for the analysis of INVALSI data
Mixed or multilevel models exploit random effects to deal with hierarchical data, where statistical units are clustered in groups and cannot be assumed as independent. Sometimes, the assumption of linear dependence of a response on a set of explanatory variables is not plausible, and model specifica...
I tiakina i:
Kaituhi matua: | VANNUCCI, GIULIA (auth) |
---|---|
Ētahi atu kaituhi: | GOTTARD, ANNA (auth), Grilli, Leonardo (auth), Rampichini, Carla (auth) |
Hōputu: | Tāhiko Wāhanga pukapuka |
Reo: | Ingarihi |
I whakaputaina: |
Florence
Firenze University Press
2021
|
Rangatū: | Proceedings e report
|
Ngā marau: | |
Urunga tuihono: | DOAB: download the publication DOAB: description of the publication |
Ngā Tūtohu: |
Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
|
Ngā tūemi rite
-
Chapter Random effects regression trees for the analysis of INVALSI data
mā: VANNUCCI, GIULIA
I whakaputaina: (2021) -
Chapter The joint estimation of accuracy and speed: An application to the INVALSI data
mā: Bungaro, Luca
I whakaputaina: (2023) -
Chapter The joint estimation of accuracy and speed: An application to the INVALSI data
mā: Bungaro, Luca
I whakaputaina: (2023) -
Chapter Assessing the predictive capability of Invalsi tests on high school final mark
mā: Bacci, Silvia
I whakaputaina: (2023) -
Chapter Assessing the predictive capability of Invalsi tests on high school final mark
mā: Bacci, Silvia
I whakaputaina: (2023)