Chapter Unsupervised spatial data mining for the development of future scenarios: a Covid-19 application

In the context of Futures Studies, the scenario development process permits to make assumptions on what the futures can be in order to support better today decisions. In the initial stages of the scenario building (Framing and Scanning phases), the process requires much time and efforts to scanning...

Full description

Saved in:
Bibliographic Details
Main Author: Calleo, Yuri (auth)
Other Authors: Di Zio, Simone (auth)
Format: Electronic Book Chapter
Language:English
Published: Florence Firenze University Press 2021
Series:Proceedings e report
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_83811
005 20220602
003 oapen
006 m o d
007 cr|mn|---annan
008 20220602s2021 xx |||||o ||| 0|eng d
020 |a 978-88-5518-461-8.33 
020 |a 9788855184618 
040 |a oapen  |c oapen 
024 7 |a 10.36253/978-88-5518-461-8.33  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Calleo, Yuri  |4 auth 
700 1 |a Di Zio, Simone  |4 auth 
245 1 0 |a Chapter Unsupervised spatial data mining for the development of future scenarios: a Covid-19 application 
260 |a Florence  |b Firenze University Press  |c 2021 
300 |a 1 electronic resource (6 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Proceedings e report 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In the context of Futures Studies, the scenario development process permits to make assumptions on what the futures can be in order to support better today decisions. In the initial stages of the scenario building (Framing and Scanning phases), the process requires much time and efforts to scanning data and information (reading of documents, literature review and consultation of experts) to understand more about the object of the foresight study. The daily use of social networks causes an exponential increase of data and for this reason here we deal with the problem of speeding up and optimizing the Scanning phase by applying a new combined method based on the analysis of tweets with the use of unsupervised classification models, text-mining and spatial data mining techniques. For the purpose of having a qualitative overview, we applied the bag-of-words model and a Sentiment Analysis with the Afinn and Vader algorithms. Then, in order to extrapolate the influence factors, and the relevant key factors (Kayser and Blind, 2017; 2020) the Latent Dirichlet Allocation (LDA) was used (Tong and Zhang, 2016). Furthermore, to acquire also spatial information we used spatial data mining technique to extract georeferenced data from which it was possible to analyse and obtain a geographic analysis of the data. To showcase our method, we provide an example using Covid-19 tweets (Uhl and Schiebel, 2017), upon which 5 topics and 6 key factors have been extracted. In the last instance, for each influence factor, a cartogram was created through the relative frequencies in order to have a spatial distribution of the users discussing each particular topic. The results fully answer the research objectives and the model used could be a new approach that can offer benefits in the scenario developments process. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
653 |a text-mining 
653 |a spatial analysis 
653 |a scenario development 
653 |a georeferenced textual data 
653 |a covid-19 
773 1 0 |7 nnaa 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/56385/1/26251.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/83811  |7 0  |z DOAB: description of the publication