Chapter Broadband NIRS Cerebral Evaluation of the Hemodynamic and Oxidative State of Cytochrome-c-Oxidase Responses to +Gz Acceleration in Healthy Volunteers

We used a miniature broadband NIRS system to monitor concentration changes in brain oxygenation (oxy- and deoxy- haemoglobin [HbO2], [HHb]) and oxidised cytochrome-c-oxidase ([oxCCO]) during a high +Gz acceleration, induced by a human centrifuge, on two healthy experienced volunteers (2 male, 34 and...

Full description

Saved in:
Bibliographic Details
Main Author: Lange, F. (auth)
Other Authors: Bale, G. (auth), Kaynezhad, P. (auth), Pollock, R.D (auth), Stevenson, A. (auth), Tachtsidis, I. (auth)
Format: Electronic Book Chapter
Language:English
Published: Springer Nature 2020
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We used a miniature broadband NIRS system to monitor concentration changes in brain oxygenation (oxy- and deoxy- haemoglobin [HbO2], [HHb]) and oxidised cytochrome-c-oxidase ([oxCCO]) during a high +Gz acceleration, induced by a human centrifuge, on two healthy experienced volunteers (2 male, 34 and 37 years). We performed a sequence of several +Gz exposures that were terminated at the onset of visual symptoms (loss of peripheral vision). Systemic parameters were recorded (i.e. heart rate, blood pressure and arterial saturation), and brain tissue blood volume changes ([HbT] = [HbO2] + [HHb]) and oxygen delivery ([HbDiff] = [HbO2] - [HHb]) were calculated. Volunteer 1 demonstrated a decrease in [HbT] of −3.49 ± 0.02 μMol and [HbDiff] of −3.23 ± 0.44 μMol, and an increase of [oxCCO] of 0.42 ± 0.01μMol. Volunteer 2 demonstrated a decrease in [HbDiff] of −4.37 ± 0.23 μMol, and no significant change in [HbT] (0.53 ± 0.06 μMol) and [oxCCO] (0.09 ± 0.06 μMol). The variability of the brain metabolic response was related to the level of ischaemia, suggesting that suppression of metabolism was due to lack of glucose substrate delivery rather than oxygen availability.
Physical Description:1 electronic resource (7 p.)
ISBN:978-3-030-34461-0_43
9783030344597
Access:Open Access