Regularized System Identification Learning Dynamic Models from Data
This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learn...
Bewaard in:
Hoofdauteur: | Pillonetto, Gianluigi (auth) |
---|---|
Andere auteurs: | Chen, Tianshi (auth), Chiuso, Alessandro (auth), De Nicolao, Giuseppe (auth), Ljung, Lennart (auth) |
Formaat: | Elektronisch Hoofdstuk |
Taal: | Engels |
Gepubliceerd in: |
Cham
Springer Nature
2022
|
Reeks: | Communications and Control Engineering
|
Onderwerpen: | |
Online toegang: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
|
Gelijkaardige items
-
Regularized System Identification Learning Dynamic Models from Data
door: Pillonetto, Gianluigi
Gepubliceerd in: (2022) -
Regularized System Identification Learning Dynamic Models from Data /
door: Pillonetto, Gianluigi, et al.
Gepubliceerd in: (2022) -
Efficient Reinforcement Learning using Gaussian Processes
door: Deisenroth, Marc Peter
Gepubliceerd in: (2010) -
Learning Dynamic Systems for Intention Recognition in Human-Robot-Cooperation
door: Krauthausen, Peter
Gepubliceerd in: (2013) -
Bayesian Methods for Statistical Analysis
door: Puza, Borek
Gepubliceerd in: (2015)