Advanced Methods of Power Load Forecasting

This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with...

Full description

Saved in:
Bibliographic Details
Other Authors: García-Díaz, J. Carlos (Editor), Trull, Óscar (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_84505
005 20220621
003 oapen
006 m o d
007 cr|mn|---annan
008 20220621s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-4217-1 
020 |a 9783036542188 
020 |a 9783036542171 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-4217-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PH  |2 bicssc 
100 1 |a García-Díaz, J. Carlos  |4 edt 
700 1 |a Trull, Óscar  |4 edt 
700 1 |a García-Díaz, J. Carlos  |4 oth 
700 1 |a Trull, Óscar  |4 oth 
245 1 0 |a Advanced Methods of Power Load Forecasting 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (128 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with a SESDA architecture, in even LSTM-CNN are used. On the other hand, multiple seasonal Holt-Winters models with discrete seasonality and the application of the Prophet method to demand forecasting are presented. These models are applied in different circumstances and show highly positive results. This reprint is intended for both researchers related to energy management and those related to forecasting, especially power load. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Physics  |2 bicssc 
653 |a Prophet model 
653 |a Holt-Winters model 
653 |a long-term forecasting 
653 |a peak load 
653 |a prophet model 
653 |a multiple seasonality 
653 |a time series 
653 |a demand 
653 |a load 
653 |a forecast 
653 |a DIMS 
653 |a irregular 
653 |a galvanizing 
653 |a short-term electrical load forecasting 
653 |a machine learning 
653 |a deep learning 
653 |a statistical analysis 
653 |a parameters tuning 
653 |a CNN 
653 |a LSTM 
653 |a short-term load forecast 
653 |a Artificial Neural Network 
653 |a deep neural network 
653 |a recurrent neural network 
653 |a attention 
653 |a encoder decoder 
653 |a online training 
653 |a bidirectional long short-term memory 
653 |a multi-layer stacked 
653 |a neural network 
653 |a short-term load forecasting 
653 |a power system 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5489  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/84505  |7 0  |z DOAB: description of the publication