Performance-Based Design in Structural Fire Engineering
The performance-based design of structures in fire is gaining growing interest as a rational alternative to the traditionally adopted prescriptive code approach. This interest has led to its introduction in different codes and standards around the world. Although engineers widely use performance-bas...
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_84517 | ||
005 | 20220621 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220621s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-4339-0 | ||
020 | |a 9783036543406 | ||
020 | |a 9783036543390 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-4339-0 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a GP |2 bicssc | |
072 | 7 | |a P |2 bicssc | |
100 | 1 | |a Youssef, Maged A. |4 edt | |
700 | 1 | |a Youssef, Maged A. |4 oth | |
245 | 1 | 0 | |a Performance-Based Design in Structural Fire Engineering |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (208 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The performance-based design of structures in fire is gaining growing interest as a rational alternative to the traditionally adopted prescriptive code approach. This interest has led to its introduction in different codes and standards around the world. Although engineers widely use performance-based methods to design structural components in earthquake engineering, the adoption of such methods in fire engineering is still very limited. This Special Issue addresses this shortcoming by providing engineers with the needed knowledge and recent research activities addressing performance-based design in structural fire engineering, including the use of hotspot analysis to estimate the magnitude of risk to people and property in urban areas; simulations of the evacuation of large crowds; and the identification of fire effects on concrete, steel, and special structures. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Research & information: general |2 bicssc | |
650 | 7 | |a Mathematics & science |2 bicssc | |
653 | |a fire incidence | ||
653 | |a hotspot analysis | ||
653 | |a KDE | ||
653 | |a Getis-Ord Gi* | ||
653 | |a IDW interpolation | ||
653 | |a fire risk zones | ||
653 | |a built-up areas | ||
653 | |a temporal analysis | ||
653 | |a sustainable development | ||
653 | |a fire | ||
653 | |a earthquake | ||
653 | |a finite element analysis | ||
653 | |a Abaqus | ||
653 | |a multi hazard analysis | ||
653 | |a Scoria aggregate concrete | ||
653 | |a PP fiber | ||
653 | |a high temperature | ||
653 | |a stress-strain curve | ||
653 | |a prefabricated cabin-type substation | ||
653 | |a panel | ||
653 | |a BP neural network | ||
653 | |a thermal-mechanical coupling | ||
653 | |a machine learning | ||
653 | |a fire behavior | ||
653 | |a impact of fires | ||
653 | |a repeated impact | ||
653 | |a ACI 544-2R | ||
653 | |a high temperatures | ||
653 | |a ECC | ||
653 | |a impact ductility | ||
653 | |a oil and gas facility | ||
653 | |a offshore platform | ||
653 | |a tanker | ||
653 | |a steel structure | ||
653 | |a bulkhead | ||
653 | |a deck | ||
653 | |a hydrocarbon fire mode | ||
653 | |a fire-resistance limit | ||
653 | |a fire protection | ||
653 | |a design | ||
653 | |a stadiums and arenas | ||
653 | |a evacuation time | ||
653 | |a safety | ||
653 | |a Colosseum | ||
653 | |a organizing evacuation | ||
653 | |a computer simulation | ||
653 | |a City University | ||
653 | |a fire temperature | ||
653 | |a opening factor | ||
653 | |a compartment area | ||
653 | |a thermal analysis | ||
653 | |a natural fire | ||
653 | |a concrete strength | ||
653 | |a exposure duration | ||
653 | |a maximum temperature | ||
653 | |a heating rate | ||
653 | |a cooling rate | ||
653 | |a reinforced concrete | ||
653 | |a columns | ||
653 | |a standard fire | ||
653 | |a cooling phase | ||
653 | |a axial capacity | ||
653 | |a temperature-stress history | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/5501 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/84517 |7 0 |z DOAB: description of the publication |