Data Science and Knowledge Discovery

Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Andere auteurs: Portela, Filipe (Redacteur)
Formaat: Elektronisch Hoofdstuk
Taal:Engels
Gepubliceerd in: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Onderwerpen:
Online toegang:DOAB: download the publication
DOAB: description of the publication
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
Omschrijving
Samenvatting:Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining.
Fysieke beschrijving:1 electronic resource (254 p.)
ISBN:books978-3-0365-4315-4
9783036543161
9783036543154
Toegang:Open Access