Data Science and Knowledge Discovery

Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows...

Full description

Saved in:
Bibliographic Details
Other Authors: Portela, Filipe (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_84521
005 20220621
003 oapen
006 m o d
007 cr|mn|---annan
008 20220621s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-4315-4 
020 |a 9783036543161 
020 |a 9783036543154 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-4315-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
100 1 |a Portela, Filipe  |4 edt 
700 1 |a Portela, Filipe  |4 oth 
245 1 0 |a Data Science and Knowledge Discovery 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (254 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
653 |a crisis reporting 
653 |a chatbots 
653 |a journalists 
653 |a news media 
653 |a COVID-19 
653 |a textbook research 
653 |a digital humanities 
653 |a digital infrastructures 
653 |a data analysis 
653 |a content base image retrieval 
653 |a semantic information retrieval 
653 |a deep features 
653 |a multimedia document retrieval 
653 |a data science 
653 |a open government data 
653 |a governance and social institutions 
653 |a economic determinants of open data 
653 |a geoinformation technology 
653 |a fractal dimension 
653 |a territorial road network 
653 |a box-counting framework 
653 |a script Python 
653 |a ArcGIS 
653 |a internet of things 
653 |a LoRaWAN 
653 |a ICT 
653 |a The Things Network 
653 |a ESP32 microcontroller 
653 |a decision systems 
653 |a rule based systems 
653 |a databases 
653 |a rough sets 
653 |a prediction by partial matching 
653 |a spatio-temporal 
653 |a activity recognition 
653 |a smart homes 
653 |a artificial intelligence 
653 |a automation 
653 |a e-commerce 
653 |a machine learning 
653 |a big data 
653 |a customer relationship management (CRM) 
653 |a distracted driving 
653 |a driving behavior 
653 |a driving operation area 
653 |a data augmentation 
653 |a feature extraction 
653 |a authorship 
653 |a text mining 
653 |a attribution 
653 |a neural networks 
653 |a deep learning 
653 |a forensic intelligence 
653 |a dashboard 
653 |a WebGIS 
653 |a data analytics 
653 |a SARS-CoV-2 
653 |a Big Data 
653 |a Web Intelligence 
653 |a media analytics 
653 |a social sciences 
653 |a humanities 
653 |a linked open data 
653 |a adaptation process 
653 |a interdisciplinary research 
653 |a media criticism 
653 |a classification 
653 |a information systems 
653 |a public health 
653 |a data mining 
653 |a ioCOVID19 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5505  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/84521  |7 0  |z DOAB: description of the publication