Symmetry in the Mathematical Inequalities

This Special Issue brings together original research papers, in all areas of mathematics, that are concerned with inequalities or the role of inequalities. The research results presented in this Special Issue are related to improvements in classical inequalities, highlighting their applications and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Minculete, Nicusor (Editor), Furuichi, Shigeru (Editor)
Formato: Electrónico Capítulo de libro
Lenguaje:inglés
Publicado: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Materias:
Acceso en línea:DOAB: download the publication
DOAB: description of the publication
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_84528
005 20220621
003 oapen
006 m o d
007 cr|mn|---annan
008 20220621s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-4006-1 
020 |a 9783036540054 
020 |a 9783036540061 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-4006-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a RG  |2 bicssc 
100 1 |a Minculete, Nicusor  |4 edt 
700 1 |a Furuichi, Shigeru  |4 edt 
700 1 |a Minculete, Nicusor  |4 oth 
700 1 |a Furuichi, Shigeru  |4 oth 
245 1 0 |a Symmetry in the Mathematical Inequalities 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (276 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This Special Issue brings together original research papers, in all areas of mathematics, that are concerned with inequalities or the role of inequalities. The research results presented in this Special Issue are related to improvements in classical inequalities, highlighting their applications and promoting an exchange of ideas between mathematicians from many parts of the world dedicated to the theory of inequalities. This volume will be of interest to mathematicians specializing in inequality theory and beyond. Many of the studies presented here can be very useful in demonstrating new results. It is our great pleasure to publish this book. All contents were peer-reviewed by multiple referees and published as papers in our Special Issue in the journal Symmetry. These studies give new and interesting results in mathematical inequalities enabling readers to obtain the latest developments in the fields of mathematical inequalities. Finally, we would like to thank all the authors who have published their valuable work in this Special Issue. We would also like to thank the editors of the journal Symmetry for their help in making this volume, especially Mrs. Teresa Yu. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Geography  |2 bicssc 
653 |a Ostrowski inequality 
653 |a Hölder's inequality 
653 |a power mean integral inequality 
653 |a n-polynomial exponentially s-convex function 
653 |a weight coefficient 
653 |a Euler-Maclaurin summation formula 
653 |a Abel's partial summation formula 
653 |a half-discrete Hilbert-type inequality 
653 |a upper limit function 
653 |a Hermite-Hadamard inequality 
653 |a (p, q)-calculus 
653 |a convex functions 
653 |a trapezoid-type inequality 
653 |a fractional integrals 
653 |a functions of bounded variations 
653 |a (p,q)-integral 
653 |a post quantum calculus 
653 |a convex function 
653 |a a priori bounds 
653 |a 2D primitive equations 
653 |a continuous dependence 
653 |a heat source 
653 |a Jensen functional 
653 |a A-G-H inequalities 
653 |a global bounds 
653 |a power means 
653 |a Simpson-type inequalities 
653 |a thermoelastic plate 
653 |a Phragmén-Lindelöf alternative 
653 |a Saint-Venant principle 
653 |a biharmonic equation 
653 |a symmetric function 
653 |a Schur-convexity 
653 |a inequality 
653 |a special means 
653 |a Shannon entropy 
653 |a Tsallis entropy 
653 |a Fermi-Dirac entropy 
653 |a Bose-Einstein entropy 
653 |a arithmetic mean 
653 |a geometric mean 
653 |a Young's inequality 
653 |a Simpson's inequalities 
653 |a post-quantum calculus 
653 |a spatial decay estimates 
653 |a Brinkman equations 
653 |a midpoint and trapezoidal inequality 
653 |a Simpson's inequality 
653 |a harmonically convex functions 
653 |a Simpson inequality 
653 |a (n,m)-generalized convexity 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5511  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/84528  |7 0  |z DOAB: description of the publication