Machine Learning and Data Mining Applications in Power Systems

This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient pow...

Full description

Saved in:
Bibliographic Details
Other Authors: Leonowicz, Zbigniew (Editor), Jasiński, Michał (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_84546
005 20220621
003 oapen
006 m o d
007 cr|mn|---annan
008 20220621s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-4178-5 
020 |a 9783036541778 
020 |a 9783036541785 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-4178-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
072 7 |a KNB  |2 bicssc 
100 1 |a Leonowicz, Zbigniew  |4 edt 
700 1 |a Jasiński, Michał  |4 edt 
700 1 |a Leonowicz, Zbigniew  |4 oth 
700 1 |a Jasiński, Michał  |4 oth 
245 1 0 |a Machine Learning and Data Mining Applications in Power Systems 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (314 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid's reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Energy industries & utilities  |2 bicssc 
653 |a virtual power plant (VPP) 
653 |a power quality (PQ) 
653 |a global index 
653 |a distributed energy resources (DER) 
653 |a energy storage systems (ESS) 
653 |a power systems 
653 |a long-term assessment 
653 |a battery energy storage systems (BESS) 
653 |a smart grids 
653 |a conducted disturbances 
653 |a power quality 
653 |a supraharmonics 
653 |a 2-150 kHz 
653 |a Power Line Communications (PLC) 
653 |a intentional emission 
653 |a non-intentional emission 
653 |a mains signalling 
653 |a virtual power plant 
653 |a data mining 
653 |a clustering 
653 |a distributed energy resources 
653 |a energy storage systems 
653 |a short term conditions 
653 |a cluster analysis (CA) 
653 |a nonlinear loads 
653 |a harmonics, cancellation, and attenuation of harmonics 
653 |a waveform distortion 
653 |a THDi 
653 |a low-voltage networks 
653 |a optimization techniques 
653 |a different batteries 
653 |a off-grid microgrid 
653 |a integrated renewable energy system 
653 |a cluster analysis 
653 |a K-means 
653 |a agglomerative 
653 |a ANFIS 
653 |a fuzzy logic 
653 |a induction generator 
653 |a MPPT 
653 |a neural network 
653 |a renewable energy 
653 |a variable speed WECS 
653 |a wind energy conversion system 
653 |a wind energy 
653 |a frequency estimation 
653 |a spectrum interpolation 
653 |a power network disturbances 
653 |a COVID-19 
653 |a time-varying reproduction number 
653 |a social distancing 
653 |a load profile 
653 |a demographic characteristic 
653 |a household energy consumption 
653 |a demand-side management 
653 |a energy management 
653 |a time series 
653 |a Hidden Markov Model 
653 |a short-term forecast 
653 |a sparse signal decomposition 
653 |a supervised dictionary learning 
653 |a dictionary impulsion 
653 |a singular value decomposition 
653 |a discrete cosine transform 
653 |a discrete Haar transform 
653 |a discrete wavelet transform 
653 |a transient stability assessment 
653 |a home energy management 
653 |a binary-coded genetic algorithms 
653 |a optimal power scheduling 
653 |a demand response 
653 |a Data Injection Attack 
653 |a machine learning 
653 |a critical infrastructure 
653 |a smart grid 
653 |a water treatment plant 
653 |a power system 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5530  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/84546  |7 0  |z DOAB: description of the publication