Visible Light Communication (VLC)
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagn...
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_84573 | ||
005 | 20220621 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20220621s2022 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-4088-7 | ||
020 | |a 9783036540870 | ||
020 | |a 9783036540887 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-4088-7 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a TB |2 bicssc | |
072 | 7 | |a TBX |2 bicssc | |
100 | 1 | |a Chen, Chen |4 edt | |
700 | 1 | |a Chen, Chen |4 oth | |
245 | 1 | 0 | |a Visible Light Communication (VLC) |
260 | |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | ||
300 | |a 1 electronic resource (240 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, "Visible Light Communication (VLC)", provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Technology: general issues |2 bicssc | |
650 | 7 | |a History of engineering & technology |2 bicssc | |
653 | |a visible light communication (VLC) | ||
653 | |a dimming control | ||
653 | |a constant transmission efficiency | ||
653 | |a error performance | ||
653 | |a light-emitting diode (LED) | ||
653 | |a visible light communications | ||
653 | |a deep learning | ||
653 | |a bit error rate | ||
653 | |a orthogonal frequency division multiplexing | ||
653 | |a index modulation | ||
653 | |a POF | ||
653 | |a FSO | ||
653 | |a LiFi | ||
653 | |a LED | ||
653 | |a orthogonal frequency division multiplexing (OFDM) | ||
653 | |a power efficiency | ||
653 | |a peak-to-average-power ratio (PAPR) | ||
653 | |a pre-distorted enhanced | ||
653 | |a underwater optical wireless communication (UOWC) | ||
653 | |a ADO-OFDM | ||
653 | |a gamma-gamma function | ||
653 | |a full-duplex | ||
653 | |a long-reach | ||
653 | |a photon counting | ||
653 | |a vehicular visible light communication (VVLC) | ||
653 | |a intelligent reflecting surface (IRS) | ||
653 | |a the number of mirrors | ||
653 | |a energy efficiency (EE) | ||
653 | |a carrierless amplitude and phase (CAP) modulation | ||
653 | |a pairwise coding (PWC) | ||
653 | |a dual-mode index modulation (DM) | ||
653 | |a chaotic encryption | ||
653 | |a visible light positioning (VLP) | ||
653 | |a free-space communication | ||
653 | |a RGB LED | ||
653 | |a non-orthogonal multiple access (NOMA) | ||
653 | |a superposition constellation adjustment | ||
653 | |a successive interference cancellation | ||
653 | |a bit error ratio | ||
653 | |a NOMA triangle | ||
653 | |a underwater wireless optical communication | ||
653 | |a temporal dispersion | ||
653 | |a bandwidth limitation | ||
653 | |a Monte Carlo method | ||
653 | |a maximum likelihood sequence estimation | ||
653 | |a visible light communication | ||
653 | |a nonlinear equalization | ||
653 | |a reservoir computing | ||
653 | |a neural network (NN) | ||
653 | |a autoencoder (AE) | ||
653 | |a transceiver design | ||
653 | |a nonlinearity | ||
653 | |a VLC | ||
653 | |a predistortion | ||
653 | |a coefficient approximation | ||
653 | |a BLSTM | ||
653 | |a orthogonal frequency-division multiplexing | ||
653 | |a sampling frequency offset | ||
653 | |a visible light communications (VLC) | ||
653 | |a mmWave communications | ||
653 | |a channel modeling | ||
653 | |a channel propagation characteristics | ||
653 | |a path loss | ||
653 | |a delay spread (DS) | ||
653 | |a Ricean K-factor | ||
653 | |a cluster characteristics | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/5555 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/84573 |7 0 |z DOAB: description of the publication |