The Origin and Early Evolution of Life Prebiotic Systems Chemistry Perspective

What is life? How, where, and when did life arise? These questions have remained most fascinating over the last hundred years. Systems chemistry is the way to go to better understand this problem and to try and answer the unsolved question regarding the origin of Life. Self-organization, thanks to t...

Full description

Saved in:
Bibliographic Details
Other Authors: Fiore, Michele (Editor), Altamura, Emiliano (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_87449
005 20220706
003 oapen
006 m o d
007 cr|mn|---annan
008 20220706s2022 xx |||||o ||| 0|eng d
020 |a books978-3-0365-4469-4 
020 |a 9783036544700 
020 |a 9783036544694 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-4469-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PS  |2 bicssc 
100 1 |a Fiore, Michele  |4 edt 
700 1 |a Altamura, Emiliano  |4 edt 
700 1 |a Fiore, Michele  |4 oth 
700 1 |a Altamura, Emiliano  |4 oth 
245 1 0 |a The Origin and Early Evolution of Life  |b Prebiotic Systems Chemistry Perspective 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (320 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a What is life? How, where, and when did life arise? These questions have remained most fascinating over the last hundred years. Systems chemistry is the way to go to better understand this problem and to try and answer the unsolved question regarding the origin of Life. Self-organization, thanks to the role of lipid boundaries, made possible the rise of protocells. The role of these boundaries is to separate and co-locate micro-environments, and make them spatially distinct; to protect and keep them at defined concentrations; and to enable a multitude of often competing and interfering biochemical reactions to occur simultaneously. The aim of this Special Issue is to summarize the latest discoveries in the field of the prebiotic chemistry of biomolecules, self-organization, protocells and the origin of life. In recent years, thousands of excellent reviews and articles have appeared in the literature and some breakthroughs have already been achieved. However, a great deal of work remains to be carried out. Beyond the borders of the traditional domains of scientific activity, the multidisciplinary character of the present Special Issue leaves space for anyone to creatively contribute to any aspect of these and related relevant topics. We hope that the presented works will be stimulating for a new generation of scientists that are taking their first steps in this fascinating field. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Biology, life sciences  |2 bicssc 
653 |a origin of life 
653 |a peptidyl-transferase center 
653 |a pseudo-symmetry 
653 |a proto-ribosome 
653 |a SymR 
653 |a emergence of biological systems 
653 |a RNA ligation 
653 |a dimerization 
653 |a standard genetic codes 
653 |a codon assignment 
653 |a tRNA 
653 |a aminoacyl-tRNA synthetase classes 
653 |a thiophene 
653 |a acetylene 
653 |a transition metal sulfides 
653 |a hydrothermal conditions 
653 |a early metabolism 
653 |a origin-of-life 
653 |a prebiotic chemistry 
653 |a protein-monosaccharide recognition 
653 |a protein-monosaccharide interactions 
653 |a FRET analysis 
653 |a glycocodon theory 
653 |a glucose oxidase 
653 |a Mars 
653 |a prebiotic chemical evolution 
653 |a early Earth 
653 |a astrobiology 
653 |a CHNOPS 
653 |a transition elements 
653 |a sample return 
653 |a exoplanets 
653 |a complex organic molecules 
653 |a astrochemistry 
653 |a interstellar medium 
653 |a molecular ices 
653 |a solid state 
653 |a protoplanetary disks 
653 |a star forming regions 
653 |a comets 
653 |a vesicles 
653 |a division 
653 |a urea-urease enzymatic reaction 
653 |a bending modulus 
653 |a budding 
653 |a ADE theory 
653 |a dynamic kinetic stability 
653 |a cognition 
653 |a chemical evolution 
653 |a systems chemistry 
653 |a metabolism 
653 |a network expansion simulation 
653 |a temperature 
653 |a thermodynamics 
653 |a protocell 
653 |a compartment 
653 |a solid interface 
653 |a lipid 
653 |a polymerization 
653 |a cyclic nucleotides 
653 |a autocatalytic set 
653 |a osmotic pressure 
653 |a cell division 
653 |a lipid membrane 
653 |a bistable reaction system 
653 |a template-directed RNA synthesis 
653 |a origin of genetic code 
653 |a time order of canonical amino acids 
653 |a proto-metabolism 
653 |a chirogenesis 
653 |a quartz 
653 |a amino acids 
653 |a radiation damage 
653 |a GC×GC-TOFMS 
653 |a origins of life 
653 |a prebiotic membranes 
653 |a protoamphiphiles 
653 |a metal ions 
653 |a hot springs 
653 |a N-acyl amino acid 
653 |a analogue conditions 
653 |a viroids 
653 |a ribozyviruses 
653 |a primordial replicators 
653 |a ribozymes 
653 |a bilayer structure 
653 |a molecular dynamics 
653 |a aggregation process 
653 |a selection 
653 |a evolution 
653 |a Fenton chemistry 
653 |a reduced phosphorus 
653 |a pyrophosphate 
653 |a chemical complexity 
653 |a minerals 
653 |a schreibersite 
653 |a olivine 
653 |a serpentinite 
653 |a ulexite 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/5637  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/87449  |7 0  |z DOAB: description of the publication